Brain MRI-based Wilson disease tissue classification: an optimised deep transfer learning approach

Wilson's disease (WD) is caused by the excessive accumulation of copper in the brain and liver, leading to death if not diagnosed early. WD shows its prevalence as white matter hyperintensity (WMH) in MRI scans. It is challenging and tedious to classify WD against controls when comparing visual...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics letters Ročník 56; číslo 25; s. 1395 - 1398
Hlavní autoři: Saba, L, Agarwal, M, Sanagala, S.S, Gupta, S.K, Sinha, G.R, Johri, A.M, Khanna, N.N, Mavrogeni, S, Laird, J.R, Pareek, G, Miner, M, Sfikakis, P.P, Protogerou, A, Viswanathan, V, Kitas, G.D, Suri, J.S
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 10.12.2020
Témata:
ISSN:0013-5194, 1350-911X, 1350-911X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Wilson's disease (WD) is caused by the excessive accumulation of copper in the brain and liver, leading to death if not diagnosed early. WD shows its prevalence as white matter hyperintensity (WMH) in MRI scans. It is challenging and tedious to classify WD against controls when comparing visually, primarily due to subtle differences in WMH. This Letter presents a computer-aided design-based automated classification strategy that uses optimised transfer learning (TL) utilising two novel paradigms known as (i) MobileNet and (ii) the Visual Geometric Group-19 (VGG-19). Further, the authors benchmark TL systems against a machine learning (ML) paradigm. Using four-fold augmentation, VGG-19 is superior to MobileNet demonstrating accuracy and area under the curve (AUC) pairs as 95.46 ± 7.70%, 0.932 (p < 0.0001) and 86.87 ± 2.23%, 0.871 (p < 0.0001), respectively. Further, MobileNet and VGG-19 showed an improvement of 3.4 and 13.5%, respectively, when benchmarked against the ML-based soft classifier – Random Forest.
ISSN:0013-5194
1350-911X
1350-911X
DOI:10.1049/el.2020.2102