Block normalised iterative hard thresholding algorithm for compressed sensing

In this letter, the authors propose block normalised iterative hard thresholding (BNIHT) algorithm for the recovery of block sparse signal, in which the non-zero elements are presented in clusters. Based on block restricted isometry property, the sufficient conditions to guarantee the convergence of...

Full description

Saved in:
Bibliographic Details
Published in:Electronics letters Vol. 55; no. 17; pp. 957 - 959
Main Authors: Zhang, Xiaobo, Xu, Wenbo, Lin, Jiaru, Dang, Yifei
Format: Journal Article
Language:English
Published: The Institution of Engineering and Technology 22.08.2019
Subjects:
ISSN:0013-5194, 1350-911X, 1350-911X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this letter, the authors propose block normalised iterative hard thresholding (BNIHT) algorithm for the recovery of block sparse signal, in which the non-zero elements are presented in clusters. Based on block restricted isometry property, the sufficient conditions to guarantee the convergence of BNIHT are derived. In addition, the number of required iterations is obtained. The simulation experiment shows that BNIHT algorithm is superior to the block IHT (BIHT) algorithm when the step size satisfies $\mu \lt 1$μ<1.
AbstractList In this letter, the authors propose block normalised iterative hard thresholding (BNIHT) algorithm for the recovery of block sparse signal, in which the non-zero elements are presented in clusters. Based on block restricted isometry property, the sufficient conditions to guarantee the convergence of BNIHT are derived. In addition, the number of required iterations is obtained. The simulation experiment shows that BNIHT algorithm is superior to the block IHT (BIHT) algorithm when the step size satisfies $\mu \lt 1$μ<1.
In this letter, the authors propose block normalised iterative hard thresholding (BNIHT) algorithm for the recovery of block sparse signal, in which the non‐zero elements are presented in clusters. Based on block restricted isometry property, the sufficient conditions to guarantee the convergence of BNIHT are derived. In addition, the number of required iterations is obtained. The simulation experiment shows that BNIHT algorithm is superior to the block IHT (BIHT) algorithm when the step size satisfies μ<1.
In this letter, the authors propose block normalised iterative hard thresholding (BNIHT) algorithm for the recovery of block sparse signal, in which the non‐zero elements are presented in clusters. Based on block restricted isometry property, the sufficient conditions to guarantee the convergence of BNIHT are derived. In addition, the number of required iterations is obtained. The simulation experiment shows that BNIHT algorithm is superior to the block IHT (BIHT) algorithm when the step size satisfies .
Author Dang, Yifei
Lin, Jiaru
Zhang, Xiaobo
Xu, Wenbo
Author_xml – sequence: 1
  givenname: Xiaobo
  orcidid: 0000-0002-1909-3038
  surname: Zhang
  fullname: Zhang, Xiaobo
  email: zxb@bupt.edu.cn
  organization: Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
– sequence: 2
  givenname: Wenbo
  surname: Xu
  fullname: Xu, Wenbo
  organization: Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
– sequence: 3
  givenname: Jiaru
  surname: Lin
  fullname: Lin, Jiaru
  organization: Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
– sequence: 4
  givenname: Yifei
  surname: Dang
  fullname: Dang, Yifei
  organization: Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
BookMark eNp9kDFPwzAQhS1UJErpxg_IwMBAih3Hjj3SqgWkIBaQ2Cw3sRuDE1d2APXf46gMCFGmG-599969UzDqXKcAOEdwhmDOr5WdZRDxGSo4OQJjhAlMOUIvIzCGEOGUIJ6fgGkIZg1RjnIKczQGD3Prqrekc76V1gRVJ6ZXXvbmQyWN9HXSN16FxtnadJtE2o3zpm_aRDufVK7dxuUABdWFKDgDx1raoKbfcwKeV8unxV1aPt7eL27KtMIsRqEZ46RAlMEK44IqxbXkGMdBNKaUF4VmNVsXBDOaxdik5lihuqg5ZRoiiCfgan-38i4Er7TYetNKvxMIiqENoawY2hBDG1Ge_ZJXpo8_uq730thDENlDn8aq3b8GYlmW2XwFKWE4cpd7zqhevLp338UmDllc_CFdlj8ub2uNvwBy-o1k
CitedBy_id crossref_primary_10_1109_TCCN_2022_3193403
crossref_primary_10_3233_JIFS_189417
crossref_primary_10_1109_TSP_2020_3037996
Cites_doi 10.1109/TIT.2010.2040894
10.1016/j.sigpro.2018.06.023
10.1109/TIT.2006.871582
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/el.2019.1795
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 959
ExternalDocumentID 10_1049_el_2019_1795
ELL2BF06583
Genre rapidPublication
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871050
– fundername: National Natural Science Foundation of China
  funderid: 61871050
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c3813-6289571680c3376ee9fa933e9f5f366977f8d8b7538621945d93e1d7d968f0103
IEDL.DBID 24P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481883600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Tue Nov 18 22:29:32 EST 2025
Wed Oct 29 21:21:39 EDT 2025
Wed Jan 22 16:59:07 EST 2025
Tue Jan 05 21:44:20 EST 2021
Mon Aug 19 07:37:47 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords iterative hard thresholding algorithm
block sparse signal
nonzero elements
sufficient conditions
iterative methods
block IHT algorithm
compressed sensing
signal reconstruction
BNIHT algorithm
block restricted isometry property
required iterations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3813-6289571680c3376ee9fa933e9f5f366977f8d8b7538621945d93e1d7d968f0103
ORCID 0000-0002-1909-3038
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2019.1795
PageCount 3
ParticipantIDs iet_journals_10_1049_el_2019_1795
wiley_primary_10_1049_el_2019_1795_ELL2BF06583
crossref_primary_10_1049_el_2019_1795
crossref_citationtrail_10_1049_el_2019_1795
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2019-08-22
PublicationDateYYYYMMDD 2019-08-22
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-22
  day: 22
PublicationDecade 2010
PublicationTitle Electronics letters
PublicationYear 2019
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Qi, R.; Yang, D.; Zhang, Y. (C4) 2018; 153
Donoho, D.L. (C1) 2006; 52
Eldar, Y.C.; Kutyniok, G. (C2) 2011; 52
Baraniuk, R.G.; Cevher, V.; Duarte, M.F. (C3) 2010; 56
Kamali, A.; Sahaf, M.R.A.; Hooseini, A.M.D. (C5) 2013; 37
2010; 56
2018; 153
2011; 52
2006; 52
2013; 37
e_1_2_5_4_1
Kamali A. (e_1_2_5_6_1) 2013; 37
e_1_2_5_2_1
Eldar Y.C. (e_1_2_5_3_1) 2011; 52
e_1_2_5_5_1
References_xml – volume: 52
  start-page: 1289
  issue: 4
  year: 2011
  end-page: 1306
  ident: C2
  article-title: Compressed sensing: theory and applications
  publication-title: Corr
– volume: 56
  start-page: 1982
  issue: 4
  year: 2010
  end-page: 2001
  ident: C3
  article-title: Model-based compressive sensing
  publication-title: Trans. Inf. Theory
– volume: 153
  start-page: 34
  year: 2018
  end-page: 46
  ident: C4
  article-title: On recovery of block sparse signals via block generalized orthogonal matching pursuit
  publication-title: Signal Process.
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  ident: C1
  article-title: Compressed sensing
  publication-title: Trans. Inf. Theory
– volume: 37
  start-page: 1
  issue: E1
  year: 2013
  end-page: 16
  ident: C5
  article-title: Block subspace pursuit for block-sparse signal reconstruction
  publication-title: IJST Trans. Electr. Eng.
– volume: 56
  start-page: 1982
  issue: 4
  year: 2010
  end-page: 2001
  article-title: Model‐based compressive sensing
  publication-title: Trans. Inf. Theory
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  article-title: Compressed sensing
  publication-title: Trans. Inf. Theory
– volume: 52
  start-page: 1289
  issue: 4
  year: 2011
  end-page: 1306
  article-title: Compressed sensing: theory and applications
  publication-title: Corr
– volume: 153
  start-page: 34
  year: 2018
  end-page: 46
  article-title: On recovery of block sparse signals via block generalized orthogonal matching pursuit
  publication-title: Signal Process.
– volume: 37
  start-page: 1
  issue: E1
  year: 2013
  end-page: 16
  article-title: Block subspace pursuit for block‐sparse signal reconstruction
  publication-title: IJST Trans. Electr. Eng.
– ident: e_1_2_5_4_1
  doi: 10.1109/TIT.2010.2040894
– ident: e_1_2_5_5_1
  doi: 10.1016/j.sigpro.2018.06.023
– volume: 37
  start-page: 1
  issue: 1
  year: 2013
  ident: e_1_2_5_6_1
  article-title: Block subspace pursuit for block‐sparse signal reconstruction
  publication-title: IJST Trans. Electr. Eng.
– ident: e_1_2_5_2_1
  doi: 10.1109/TIT.2006.871582
– volume: 52
  start-page: 1289
  issue: 4
  year: 2011
  ident: e_1_2_5_3_1
  article-title: Compressed sensing: theory and applications
  publication-title: Corr
SSID ssib014146041
ssj0012997
Score 2.298489
Snippet In this letter, the authors propose block normalised iterative hard thresholding (BNIHT) algorithm for the recovery of block sparse signal, in which the...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 957
SubjectTerms block IHT algorithm
block restricted isometry property
block sparse signal
BNIHT algorithm
compressed sensing
iterative hard thresholding algorithm
iterative methods
nonzero elements
required iterations
Signal processing
signal reconstruction
sufficient conditions
Title Block normalised iterative hard thresholding algorithm for compressed sensing
URI http://digital-library.theiet.org/content/journals/10.1049/el.2019.1795
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2019.1795
Volume 55
WOSCitedRecordID wos000481883600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4YcIADb8R4KUhwQoUl6SM5MrQJpDHtwGO3KmuSMTEKWgu_H7stgx1AQlxaqbXVKn7kc5zYhBw7zS0TTnvc2IHna197UnPl-Y41ZOSMSooT3vedqNuV_b7qVQtueBamrA8xXXBDyyj8NRq4HpRdSADUohAxccDUGWhUUCMLjIkItZr7vWkWAVxt0VxFBA006n618R34z79zz0xJtZHNZ4FqMdO0V__7j2tkpcKY9KJUinUyZ9MNsvyt8uAmuWnCJPZEU0Ss41FmDS3LK4Pvo3gOi-Yg46xKTVE9Hr5MRvnjMwWIS3EXelFy3NAMt7-nwy1y127dXl55VWcFL4EZWnghhFkBREqykQjwMNYqp5UQcAucCEPAhE4aOYBQBgIepvzAKGGZiYwKpcPOENtkPn1J7Q6hjcgk_kAngMNA0ImWvuOKWx1KzbhhYZ2cfg5unFRlx7H7xTgu0t--iu04xkGKcZDq5GRK_VqW2_iB7gjkFFf2lv1AczBD0-p8vYtfjauTUna_fgi4OrzZRqAmdv_KsEeW8DkuQXO-T-bzyZs9IIvJez7KJoeFrsL14br7AfuO6GI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED6NDgn2wAYMrQOGkeAJhTW2k9qPFFExESoeAPUtcmO7VHQBNRm_n7sk6-gDSGhPecidEvl8d9_5zncAB95wFwpvAm7dKJBGmkAZrgPpw47qequz6ob3bdIdDNRwqK-aOad0F6buDzE_cCPNqOw1KTgdSNcBp6QmmY4yB6E-xi0VLcFHiY6GRhhweTVPI6CtraariKhDWj1sKt-R_-dL7gWftDRx5SJSrVxN__N__-QXWGtQJjupt8U6fHD5Bnx60XtwEy576MbuWU6YdTopnGV1g2W0foxuYrESpVw0ySlmpuOH2aS8-80Q5DKqQ6-ajltWUAF8Pv4KN_2z69PzoJmtEGToo0UQY6AVYaykOplAG-Oc9kYLgY_IizhGVOiVVSMMZjDkCbWMrBYutF2rY-VpNsQWtPKH3H0D1unaTI5MhkgMRZ0ZJT3X3JlYmZDbMG7D0d_VTbOm8TjNv5imVQJc6tRNU1qklBapDYdz6se64cYrdPsoqLTRuOIVmt0FmrPk37v00fo21MJ780PIlfBen6Ca-P5ehj1YOb--TNLk1-BiG1aJhg6kOd-BVjn743ZhOXsqJ8XsR7VxnwFX4-s1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7x0mo58FpWW17rldgTCjS2k9pHXhWIbtUDoN4iN7ZLRTegJvD7mUmyhR5YCXHKITNKNON5eexvAPa94S4U3gTcukEgjTSBMlwH0odN1fJWp-UN79tOq9tV_b7u1XNO6S5MhQ8x3XAjyyj9NRm4e7S-KjglgWQ66hyE-hCXVDQPizJCN0vQzrI3bSOgry2nq4ioSVbdr0--I__RW-6ZmDQ_csVsplqGmvbqp39yDVbqLJMdV8tiHeZctgHLb7AHv8GfEwxj9yyjnHU8yp1lFcAyej9GN7FYgVrO6-YUM-Phw2RU3P1lmOQyOodego5bltMB-Gy4CTft8-vTi6CerRCkGKNFEGOhhQKLVTMV6GOc095oIfAReRHHmBV6ZdUAixkseUItI6uFC23L6lh5mg3xHRayh8z9ANZs2VQOTIqZGKo6NUp6rrkzsTIht2HcgIN_0k3SGnic5l-Mk7IBLnXixgkJKSEhNeD3lPqxAtx4h-4XKiqpLS5_h2Z3hua88_ouQT01oFLefz-EXB1-0qZUTWx9lOEnfOmdtZPOZfdqG74SCe1Hc74DC8Xkye3CUvpcjPLJXrluXwAXTeq5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Block+normalised+iterative+hard+thresholding+algorithm+for+compressed+sensing&rft.jtitle=Electronics+letters&rft.au=Zhang%2C+Xiaobo&rft.au=Xu%2C+Wenbo&rft.au=Lin%2C+Jiaru&rft.au=Dang%2C+Yifei&rft.date=2019-08-22&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1350-911X&rft.eissn=1350-911X&rft.volume=55&rft.issue=17&rft.spage=957&rft.epage=959&rft_id=info:doi/10.1049%2Fel.2019.1795&rft.externalDBID=10.1049%252Fel.2019.1795&rft.externalDocID=ELL2BF06583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon