Two-dimensional cache-oblivious sparse matrix–vector multiplication

► Extended a one-dimensional cache-oblivious sparse matrix–vector multiplication scheme to two dimensions. ► Introduced the doubly separated block diagonal (DSBD) form for sparse matrices. ► Introduced a family of recursive sparse blocking schemes for matrices in DSBD form. ► Obtained speedups in sp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Parallel computing Ročník 37; číslo 12; s. 806 - 819
Hlavní autoři: Yzelman, A.N., Bisseling, Rob H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2011
Témata:
ISSN:0167-8191, 1872-7336
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:► Extended a one-dimensional cache-oblivious sparse matrix–vector multiplication scheme to two dimensions. ► Introduced the doubly separated block diagonal (DSBD) form for sparse matrices. ► Introduced a family of recursive sparse blocking schemes for matrices in DSBD form. ► Obtained speedups in sparse matrix–vector multiplication of over a factor of three. In earlier work, we presented a one-dimensional cache-oblivious sparse matrix–vector (SpMV) multiplication scheme which has its roots in one-dimensional sparse matrix partitioning. Partitioning is often used in distributed-memory parallel computing for the SpMV multiplication, an important kernel in many applications. A logical extension is to move towards using a two-dimensional partitioning. In this paper, we present our research in this direction, extending the one-dimensional method for cache-oblivious SpMV multiplication to two dimensions, while still allowing only row and column permutations on the sparse input matrix. This extension requires a generalisation of the compressed row storage data structure to a block-based data structure, for which several variants are investigated. Experiments performed on three different architectures show further improvements of the two-dimensional method compared to the one-dimensional method, especially in those cases where the one-dimensional method already provided significant gains. The largest gain obtained by our new reordering is over a factor of 3 in SpMV speed, compared to the natural matrix ordering.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0167-8191
1872-7336
DOI:10.1016/j.parco.2011.08.004