A new insight for real-time wastewater quality prediction using hybridized kernel-based extreme learning machines with advanced optimization algorithms

   Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental science and pollution research international Ročník 29; číslo 14; s. 20496 - 20516
Hlavní autori: Alavi, Javad, Ewees, Ahmed A., Ansari, Sepideh, Shahid, Shamsuddin, Yaseen, Zaher Mundher
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2022
Predmet:
ISSN:0944-1344, 1614-7499, 1614-7499
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:   Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0944-1344
1614-7499
1614-7499
DOI:10.1007/s11356-021-17190-2