Data-Dependent Hashing Based on p-Stable Distribution

The p-stable distribution is traditionally used for data-independent hashing. In this paper, we describe how to perform data-dependent hashing based on p-stable distribution. We commence by formulating the Euclidean distance preserving property in terms of variance estimation. Based on this property...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 23; no. 12; pp. 5033 - 5046
Main Authors: Bai, Xiao, Yang, Haichuan, Zhou, Jun, Ren, Peng, Cheng, Jian
Format: Journal Article
Language:English
Published: United States IEEE 01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The p-stable distribution is traditionally used for data-independent hashing. In this paper, we describe how to perform data-dependent hashing based on p-stable distribution. We commence by formulating the Euclidean distance preserving property in terms of variance estimation. Based on this property, we develop a projection method, which maps the original data to arbitrary dimensional vectors. Each projection vector is a linear combination of multiple random vectors subject to p-stable distribution, in which the weights for the linear combination are learned based on the training data. An orthogonal matrix is then learned data-dependently for minimizing the thresholding error in quantization. Combining the projection method and orthogonal matrix, we develop an unsupervised hashing scheme, which preserves the Euclidean distance. Compared with data-independent hashing methods, our method takes the data distribution into consideration and gives more accurate hashing results with compact hash codes. Different from many data-dependent hashing methods, our method accommodates multiple hash tables and is not restricted by the number of hash functions. To extend our method to a supervised scenario, we incorporate a supervised label propagation scheme into the proposed projection method. This results in a supervised hashing scheme, which preserves semantic similarity of data. Experimental results show that our methods have outperformed several state-of-the-art hashing approaches in both effectiveness and efficiency.
AbstractList The p-stable distribution is traditionally used for data-independent hashing. In this paper, we describe how to perform data-dependent hashing based on p-stable distribution. We commence by formulating the Euclidean distance preserving property in terms of variance estimation. Based on this property, we develop a projection method, which maps the original data to arbitrary dimensional vectors. Each projection vector is a linear combination of multiple random vectors subject to p-stable distribution, in which the weights for the linear combination are learned based on the training data. An orthogonal matrix is then learned data-dependently for minimizing the thresholding error in quantization. Combining the projection method and orthogonal matrix, we develop an unsupervised hashing scheme, which preserves the Euclidean distance. Compared with data-independent hashing methods, our method takes the data distribution into consideration and gives more accurate hashing results with compact hash codes. Different from many data-dependent hashing methods, our method accommodates multiple hash tables and is not restricted by the number of hash functions. To extend our method to a supervised scenario, we incorporate a supervised label propagation scheme into the proposed projection method. This results in a supervised hashing scheme, which preserves semantic similarity of data. Experimental results show that our methods have outperformed several state-of-the-art hashing approaches in both effectiveness and efficiency.
The p-stable distribution is traditionally used for data-independent hashing. In this paper, we describe how to perform data-dependent hashing based on p-stable distribution. We commence by formulating the Euclidean distance preserving property in terms of variance estimation. Based on this property, we develop a projection method, which maps the original data to arbitrary dimensional vectors. Each projection vector is a linear combination of multiple random vectors subject to p-stable distribution, in which the weights for the linear combination are learned based on the training data. An orthogonal matrix is then learned data-dependently for minimizing the thresholding error in quantization. Combining the projection method and orthogonal matrix, we develop an unsupervised hashing scheme, which preserves the Euclidean distance. Compared with data-independent hashing methods, our method takes the data distribution into consideration and gives more accurate hashing results with compact hash codes. Different from many data-dependent hashing methods, our method accommodates multiple hash tables and is not restricted by the number of hash functions. To extend our method to a supervised scenario, we incorporate a supervised label propagation scheme into the proposed projection method. This results in a supervised hashing scheme, which preserves semantic similarity of data. Experimental results show that our methods have outperformed several state-of-the-art hashing approaches in both effectiveness and efficiency.The p-stable distribution is traditionally used for data-independent hashing. In this paper, we describe how to perform data-dependent hashing based on p-stable distribution. We commence by formulating the Euclidean distance preserving property in terms of variance estimation. Based on this property, we develop a projection method, which maps the original data to arbitrary dimensional vectors. Each projection vector is a linear combination of multiple random vectors subject to p-stable distribution, in which the weights for the linear combination are learned based on the training data. An orthogonal matrix is then learned data-dependently for minimizing the thresholding error in quantization. Combining the projection method and orthogonal matrix, we develop an unsupervised hashing scheme, which preserves the Euclidean distance. Compared with data-independent hashing methods, our method takes the data distribution into consideration and gives more accurate hashing results with compact hash codes. Different from many data-dependent hashing methods, our method accommodates multiple hash tables and is not restricted by the number of hash functions. To extend our method to a supervised scenario, we incorporate a supervised label propagation scheme into the proposed projection method. This results in a supervised hashing scheme, which preserves semantic similarity of data. Experimental results show that our methods have outperformed several state-of-the-art hashing approaches in both effectiveness and efficiency.
Author Ren, Peng
Yang, Haichuan
Bai, Xiao
Zhou, Jun
Cheng, Jian
Author_xml – sequence: 1
  givenname: Xiao
  surname: Bai
  fullname: Bai, Xiao
  email: baixiao@buaa.edu.cn
  organization: School of Computer Science and Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Haichuan
  surname: Yang
  fullname: Yang, Haichuan
  email: yanghaichuan@outlook.com
  organization: School of Computer Science and Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  email: jun.zhou@griffith.edu.au
  organization: School of Information and Communication Technology, Griffith University, Nathan, Australia
– sequence: 4
  givenname: Peng
  surname: Ren
  fullname: Ren, Peng
  email: renpenghit@126.com
  organization: College of Information and Control Engineering, China University of Petroleum, Qingdao, China
– sequence: 5
  givenname: Jian
  surname: Cheng
  fullname: Cheng, Jian
  email: jcheng@nlpr.ia.ac.cn
  organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25167552$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1r3DAQBmBRUpps2nuhUAy95OLtjCxZ8rHJ5gsCLTQ9C9katwpeeWvJh_z7yuwmhxxCTxLoeQc074odhTEQYx8R1ojQfL2__bHmgGLNK8mF1G_YCTYCSwDBj_IdpCoViuaYrWJ8gCwl1u_YMc-HkpKfMLmxyZYb2lFwFFJxY-MfH34X5zaSK8ZQ7MqfybYDFRsf0-TbOfkxvGdveztE-nA4T9mvq8v7i5vy7vv17cW3u7KrNKTSourR2Z4IWilF77Al3mPTKS4VQiu6vgbXSKGAQEtdVdpx6KXLbxylq07Z2X7ubhr_zhST2frY0TDYQOMcDdaCc0St-H9Q1Ci40gv98oI-jPMU8kcWVTcaUNVZfT6oud2SM7vJb-30aJ52l0G9B900xjhRbzqf7LKeNFk_GASzlGRySWYpyRxKykF4EXya_Urk0z7iieiZ11oLXanqH1HKmEc
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_patcog_2017_04_030
crossref_primary_10_1016_j_patcog_2018_02_002
crossref_primary_10_1109_TCYB_2019_2941284
crossref_primary_10_1109_TGRS_2020_3035676
crossref_primary_10_1038_s41598_022_11217_5
crossref_primary_10_1016_j_patrec_2019_04_021
crossref_primary_10_1109_TCYB_2015_2480966
crossref_primary_10_1109_TIFS_2015_2421332
crossref_primary_10_1016_j_patcog_2018_12_004
crossref_primary_10_1016_j_knosys_2025_113954
crossref_primary_10_1016_j_patrec_2019_07_010
crossref_primary_10_1016_j_patrec_2019_06_012
crossref_primary_10_3390_sym12071193
crossref_primary_10_1109_TCYB_2019_2955130
crossref_primary_10_1109_TIP_2017_2675342
crossref_primary_10_1109_TCYB_2020_3032017
crossref_primary_10_1007_s11042_015_3159_3
crossref_primary_10_1109_TCYB_2020_2964993
crossref_primary_10_1016_j_patcog_2019_107179
crossref_primary_10_1007_s11042_017_4625_x
crossref_primary_10_1016_j_patcog_2017_03_020
crossref_primary_10_14201_adcaij_31698
crossref_primary_10_1016_j_patcog_2019_107084
crossref_primary_10_1016_j_patcog_2020_107334
crossref_primary_10_1109_TIP_2015_2505180
crossref_primary_10_1016_j_neucom_2019_01_040
crossref_primary_10_1007_s13042_023_01819_4
crossref_primary_10_1016_j_patrec_2019_04_016
crossref_primary_10_1109_TIP_2016_2627801
Cites_doi 10.1109/CVPR.2010.5540024
10.1109/CVPR.2013.378
10.1090/mmono/065
10.1109/CVPR.2011.5995709
10.1109/SFCS.2000.892082
10.1109/TPAMI.2012.48
10.1145/361002.361007
10.1109/TPAMI.2011.103
10.1109/CVPR.2013.205
10.1023/B:VISI.0000029664.99615.94
10.1016/j.ijar.2008.11.006
10.1109/ICIP.2013.6738551
10.1162/0899766041732396
10.1145/276698.276876
10.1145/997817.997857
10.1109/TMM.2012.2199970
10.1109/CVPR.2006.68
10.1109/TPAMI.2009.151
10.1109/TPAMI.2011.219
10.1109/TPAMI.2012.193
10.1023/A:1011139631724
10.1007/978-1-4757-1904-8
10.1111/j.1469-1809.1936.tb02137.x
10.1007/BF02289451
10.1145/1835449.1835455
10.1145/2348283.2348293
10.1109/CVPR.2010.5540039
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2014.2352458
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5046
ExternalDocumentID 3472705341
25167552
10_1109_TIP_2014_2352458
6884837
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China; Natural Science Foundation of China
  grantid: 61370123; 61105002; 61105005
  funderid: 10.13039/501100001809
– fundername: Qingdao Fundamental Research Project
  grantid: 13-1-4-256-jch
– fundername: Australian Research Councils through the Discovery Early Career Researcher Award Funding Scheme
  grantid: ID DE120102948
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c380t-a17f1dafee0b554fd1be2f19c725710b4cf60d95470e0858338d20f5d10b215d3
IEDL.DBID RIE
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000344481700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Wed Oct 01 12:56:11 EDT 2025
Thu Oct 02 05:48:43 EDT 2025
Mon Jun 30 10:17:54 EDT 2025
Mon Jul 21 06:06:31 EDT 2025
Tue Nov 18 22:33:19 EST 2025
Sat Nov 29 03:20:55 EST 2025
Wed Aug 27 08:32:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords hash retrieval
Image retrieval
p-stable distribution
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-a17f1dafee0b554fd1be2f19c725710b4cf60d95470e0858338d20f5d10b215d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25167552
PQID 1616980176
PQPubID 85429
PageCount 14
ParticipantIDs proquest_journals_1616980176
proquest_miscellaneous_1618142782
pubmed_primary_25167552
crossref_primary_10_1109_TIP_2014_2352458
proquest_miscellaneous_1642211872
ieee_primary_6884837
crossref_citationtrail_10_1109_TIP_2014_2352458
PublicationCentury 2000
PublicationDate 2014-Dec.
2014-12-00
2014-Dec
20141201
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-Dec.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
liu (ref9) 2011
ref34
ref15
ref36
krizhevsky (ref43) 2009
ref31
ref33
ref11
weiss (ref7) 2008
liu (ref32) 2012
ref2
belkin (ref18) 2001; 14
ref1
liu (ref42) 2013
ref39
ref16
ref19
kulis (ref8) 2009; 22
jolliffe (ref24) 1986; 487
fan (ref45) 2008; 9
weiss (ref21) 2012
kong (ref26) 2012
raginsky (ref17) 2009; 22
ref23
ref25
weber (ref4) 1998
ref20
ref22
ref44
heo (ref38) 2012
ref28
ref27
xu (ref41) 2011
ref29
norouzi (ref10) 2011
zhu (ref14) 2002
ref3
wang (ref30) 2010
kong (ref37) 2012
ref6
ref5
ref40
zolotarev (ref12) 1986; 65
References_xml – ident: ref31
  doi: 10.1109/CVPR.2010.5540024
– ident: ref39
  doi: 10.1109/CVPR.2013.378
– volume: 65
  year: 1986
  ident: ref12
  publication-title: One-Dimensional Stable Distributions
  doi: 10.1090/mmono/065
– start-page: 1753
  year: 2008
  ident: ref7
  article-title: Spectral hashing
  publication-title: Proc Neural Inf Process Syst Conf
– start-page: 1127
  year: 2010
  ident: ref30
  article-title: Sequential projection learning for hashing with compact codes
  publication-title: Proc Int Conf Mach Learn
– ident: ref35
  doi: 10.1109/CVPR.2011.5995709
– ident: ref16
  doi: 10.1109/SFCS.2000.892082
– start-page: 634
  year: 2012
  ident: ref37
  article-title: Double-bit quantization for hashing
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref29
  doi: 10.1109/TPAMI.2012.48
– ident: ref1
  doi: 10.1145/361002.361007
– year: 2002
  ident: ref14
  article-title: Learning from labeled and unlabeled data with label propagation
– ident: ref27
  doi: 10.1109/TPAMI.2011.103
– volume: 22
  start-page: 1042
  year: 2009
  ident: ref8
  article-title: Learning to hash with binary reconstructive embeddings
  publication-title: Proc Neural Inf Process Syst Conf
– start-page: 626
  year: 2013
  ident: ref42
  article-title: Reciprocal hash tables for nearest neighbor search
  publication-title: Proc 27th AAAI Conf Artif Intell
– ident: ref23
  doi: 10.1109/CVPR.2013.205
– ident: ref44
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref34
  doi: 10.1016/j.ijar.2008.11.006
– start-page: 340
  year: 2012
  ident: ref21
  article-title: Multidimensional spectral hashing
  publication-title: Proc 12th Eur Conf Comput Vis
– start-page: 2074
  year: 2012
  ident: ref32
  article-title: Supervised hashing with kernels
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– start-page: 194
  year: 1998
  ident: ref4
  article-title: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
  publication-title: Proc Int Conf Very Large Data Bases
– ident: ref15
  doi: 10.1109/ICIP.2013.6738551
– ident: ref19
  doi: 10.1162/0899766041732396
– ident: ref5
  doi: 10.1145/276698.276876
– ident: ref6
  doi: 10.1145/997817.997857
– start-page: 353
  year: 2011
  ident: ref10
  article-title: Minimal loss hashing for compact binary codes
  publication-title: Proc Int Conf Mach Learn
– ident: ref22
  doi: 10.1109/TMM.2012.2199970
– ident: ref2
  doi: 10.1109/CVPR.2006.68
– ident: ref33
  doi: 10.1109/TPAMI.2009.151
– ident: ref11
  doi: 10.1109/TPAMI.2011.219
– start-page: 1
  year: 2011
  ident: ref9
  article-title: Hashing with graphs
  publication-title: Proc Int Conf Mach Learn
– volume: 9
  start-page: 1871
  year: 2008
  ident: ref45
  article-title: Liblinear: A library for large linear classification
  publication-title: J Mach Learn Res
– start-page: 1655
  year: 2012
  ident: ref26
  article-title: Isotropic hashing
  publication-title: Proc Neural Inf Process Syst Conf
– year: 2009
  ident: ref43
  article-title: Learning multiple layers of features from tiny images
– ident: ref13
  doi: 10.1109/TPAMI.2012.193
– ident: ref3
  doi: 10.1023/A:1011139631724
– volume: 487
  year: 1986
  ident: ref24
  publication-title: Principal Component Analysis
  doi: 10.1007/978-1-4757-1904-8
– start-page: 1631
  year: 2011
  ident: ref41
  article-title: Complementary hashing for approximate nearest neighbor search
  publication-title: Proc Int Conf Comput Vis
– ident: ref28
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– volume: 14
  start-page: 585
  year: 2001
  ident: ref18
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Proc Neural Inf Process Syst Conf
– start-page: 2957
  year: 2012
  ident: ref38
  article-title: Spherical hashing
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref40
  doi: 10.1007/BF02289451
– volume: 22
  start-page: 1509
  year: 2009
  ident: ref17
  article-title: Locality-sensitive binary codes from shift-invariant kernels
  publication-title: Proc Neural Inf Process Syst Conf
– ident: ref20
  doi: 10.1145/1835449.1835455
– ident: ref36
  doi: 10.1145/2348283.2348293
– ident: ref25
  doi: 10.1109/CVPR.2010.5540039
SSID ssj0014516
Score 2.3615415
Snippet The p-stable distribution is traditionally used for data-independent hashing. In this paper, we describe how to perform data-dependent hashing based on...
The p-stable distribution is traditionally used for data-independent hashing. In this paper, we describe how to perform Data-Dependent Hashing Based on...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5033
SubjectTerms Binary codes
Educational institutions
Euclidean distance
Hash based algorithms
Image processing
Mathematical analysis
Methods
Preserves
Projection
Quantization (signal)
Semantics
Similarity
Training
Vectors
Vectors (mathematics)
Title Data-Dependent Hashing Based on p-Stable Distribution
URI https://ieeexplore.ieee.org/document/6884837
https://www.ncbi.nlm.nih.gov/pubmed/25167552
https://www.proquest.com/docview/1616980176
https://www.proquest.com/docview/1618142782
https://www.proquest.com/docview/1642211872
Volume 23
WOSCitedRecordID wos000344481700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL) - NZ
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-UwEB9U9rAeVtevfa5KBS-C8SWxbdqj-hS9iAcX3q2kmRQE6RNf3_79O5PmlRV2BW-FTJswH8wvnWR-ACfGYe2MU6LW6AUjAmGzWomi4c4iBnVubSCbMA8PxXRaPq7A2XAXxnsfDp_5c34MtXycuQX_KhvnRcEN0Fdh1Zi8v6s1VAyYcDZUNmk2Q7B_WZKU5fjp_pHPcKXnmtBGmjFFH2V1QsqZfpeNAr3K_5FmyDi3G59b6yZ8i8gyuexd4Tus-HYLNiLKTGIMz7dg_a8WhNuQTWxnxSRS4XbJXU-ulFxRdsNk1iavgvBo_eKTCbfYjexYO_Dr9ubp-k5EKgXhLgrZCatMo9A23suaAESDqva6UaUzFLJK1qlrcolllhrpCYQVtHFFLZsMaYxAAV7swlo7a_0PSGymUaU1GuUwRWUZQtgGpaMPZog4gvFSpZWLfcaZ7uKlCvsNWVZkj4rtUUV7jOB0eOO177Hxgew263qQi2oewcHSalUMwnlFYDYvKQObfATHwzCFD9dEbOtniyBTKKYb0R_JpFozLTvJ7PUeMcy_dKT9f6_rJ3zl1ffnXw5grXtb-EP44n53z_O3I_LjaXEU_PgPenvq0g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5qFbQPVvvDXq12BV8E00vSZLP7qJ7liu3RhxP6tmQzWSiUvdLb8-93ks0tFrTg20JmN9nMDPMlk8wH8NE4rJ1xgtUSPQuIgFldC1Y0obKIQZlbG8kmzGxWXF-XVxvwebgL472Ph8_8SXiMuXxcuFXYKhvnRREKoD-Bp1opyfvbWkPOIFDOxtwm9WcI-K-Tkrwcz8-vwikudSIJbygdSPoorhNW1vJBPIoEK__GmjHmnG3_32hfwcuELbMvvTG8hg3f7sB2wplZ8uLlDmz9UYRwF_TEdpZNEhlul017eqXsK8U3zBZtdscIkda3PpuEIruJH2sPfp59n3-bskSmwNxpwTtmhWkE2sZ7XhOEaFDUXjaidIacVvBauSbnWGpluCcYVtDSFSVvNFIbwQI83YfNdtH6A8islihUjUY4VChsABG2Qe7ogxoRRzBeT2nlUqXxQHhxW8UVBy8r0kcV9FElfYzg0_DGXV9l4xHZ3TDXg1ya5hEcrbVWJTdcVgRn85JisMlH8GFoJgcKWRHb-sUqyhQiEI7Ix2SUlIGYnWTe9BYx9L82pMO_j-sYnk_nlxfVxfnsx1t4Ef6kPw1zBJvd_cq_g2fuV3ezvH8frfk3UEPtMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-dependent+hashing+based+on+p-stable+distribution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Bai%2C+Xiao&rft.au=Yang%2C+Haichuan&rft.au=Zhou%2C+Jun&rft.au=Ren%2C+Peng&rft.date=2014-12-01&rft.eissn=1941-0042&rft.volume=23&rft.issue=12&rft.spage=5033&rft_id=info:doi/10.1109%2FTIP.2014.2352458&rft_id=info%3Apmid%2F25167552&rft.externalDocID=25167552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon