A modified inertial proximal minimization algorithm for structured nonconvex and nonsmooth problem
We introduce an enhanced inertial proximal minimization algorithm tailored for a category of structured nonconvex and nonsmooth optimization problems. The objective function in question is an aggregation of a smooth function with an associated linear operator, a nonsmooth function dependent on an in...
Gespeichert in:
| Veröffentlicht in: | Journal of inequalities and applications Jg. 2024; H. 1; S. 124 - 23 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
20.09.2024
Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 1029-242X, 1025-5834, 1029-242X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We introduce an enhanced inertial proximal minimization algorithm tailored for a category of structured nonconvex and nonsmooth optimization problems. The objective function in question is an aggregation of a smooth function with an associated linear operator, a nonsmooth function dependent on an independent variable, and a mixed function involving two variables. Throughout the iterative procedure, parameters are selected employing a straightforward approach, and weak inertial terms are incorporated into two subproblems within the update sequence. Under a set of lenient conditions, we demonstrate that the sequence engendered by our algorithm is bounded. Furthermore, we establish the global and strong convergence of the algorithmic sequence, contingent upon the assumption that the principal function adheres to the Kurdyka–Łojasiewicz (KL) property. Ultimately, the numerical outcomes corroborate the algorithm’s feasibility and efficacy. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1029-242X 1025-5834 1029-242X |
| DOI: | 10.1186/s13660-024-03206-1 |