A modified inertial proximal minimization algorithm for structured nonconvex and nonsmooth problem

We introduce an enhanced inertial proximal minimization algorithm tailored for a category of structured nonconvex and nonsmooth optimization problems. The objective function in question is an aggregation of a smooth function with an associated linear operator, a nonsmooth function dependent on an in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of inequalities and applications Ročník 2024; číslo 1; s. 124 - 23
Hlavní autoři: Xue, Zhonghui, Ma, Qianfeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 20.09.2024
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1029-242X, 1025-5834, 1029-242X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce an enhanced inertial proximal minimization algorithm tailored for a category of structured nonconvex and nonsmooth optimization problems. The objective function in question is an aggregation of a smooth function with an associated linear operator, a nonsmooth function dependent on an independent variable, and a mixed function involving two variables. Throughout the iterative procedure, parameters are selected employing a straightforward approach, and weak inertial terms are incorporated into two subproblems within the update sequence. Under a set of lenient conditions, we demonstrate that the sequence engendered by our algorithm is bounded. Furthermore, we establish the global and strong convergence of the algorithmic sequence, contingent upon the assumption that the principal function adheres to the Kurdyka–Łojasiewicz (KL) property. Ultimately, the numerical outcomes corroborate the algorithm’s feasibility and efficacy.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-024-03206-1