Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture
Zinc-ion hybrid supercapacitor emerges as a promising energy storage device in benefit of the merits from both battery and supercapacitor. However, the challenges induced by the low energy density and poor cycling stability of the cathodes hinder the practical applications of zinc-ion hybrid superca...
Saved in:
| Published in: | Electrochimica acta Vol. 327; p. 134999 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
10.12.2019
Elsevier BV |
| Subjects: | |
| ISSN: | 0013-4686, 1873-3859 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Zinc-ion hybrid supercapacitor emerges as a promising energy storage device in benefit of the merits from both battery and supercapacitor. However, the challenges induced by the low energy density and poor cycling stability of the cathodes hinder the practical applications of zinc-ion hybrid supercapacitors. To address these issues, a structural engineering of carbonaceous cathode into a hierarchical porous architecture based on a hydrothermal-assisted molecular-scale mixing strategy is proposed. The key structures of the as-fabricated hierarchical porous carbon consist of high specific surface area, well-interconnected hierarchical porous morphology and favorable graphitization degree with good conductivity, which promises great conceptual and technological potential for high-performance zinc-ion storage. It is demonstrated that the high specific surface area supply sufficient active sites for zinc-ion storage, and collectively, the valuable hierarchical porous structure and high electric conductivity are beneficial for rapid transfer/diffusion of zinc ion. An ultrahigh capacity of 305 mAh g−1, a high energy density of 118 Wh kg−1, good rate capability, and excellent cycling stability of over 94.9% after 20000 cycles at a high current density of 2 A g−1 can be achieved when hierarchical porous carbon is used as the cathode of a zinc-ion hybrid supercapacitor.
[Display omitted]
•High-energy-density and ultra-stable zinc-ion hybrid supercapacitors are realized.•Hierarchical porous carbon is obtained based on a purposeful hydrothermal-assisted molecular-scale mixing strategy.•High surface area, hierarchical porous architecture and favorable graphitization degree is favorable to zinc-ion storage. |
|---|---|
| AbstractList | Zinc-ion hybrid supercapacitor emerges as a promising energy storage device in benefit of the merits from both battery and supercapacitor. However, the challenges induced by the low energy density and poor cycling stability of the cathodes hinder the practical applications of zinc-ion hybrid supercapacitors. To address these issues, a structural engineering of carbonaceous cathode into a hierarchical porous architecture based on a hydrothermal-assisted molecular-scale mixing strategy is proposed. The key structures of the as-fabricated hierarchical porous carbon consist of high specific surface area, well-interconnected hierarchical porous morphology and favorable graphitization degree with good conductivity, which promises great conceptual and technological potential for high-performance zinc-ion storage. It is demonstrated that the high specific surface area supply sufficient active sites for zinc-ion storage, and collectively, the valuable hierarchical porous structure and high electric conductivity are beneficial for rapid transfer/diffusion of zinc ion. An ultrahigh capacity of 305 mAh g−1, a high energy density of 118 Wh kg−1, good rate capability, and excellent cycling stability of over 94.9% after 20000 cycles at a high current density of 2 A g−1 can be achieved when hierarchical porous carbon is used as the cathode of a zinc-ion hybrid supercapacitor. Zinc-ion hybrid supercapacitor emerges as a promising energy storage device in benefit of the merits from both battery and supercapacitor. However, the challenges induced by the low energy density and poor cycling stability of the cathodes hinder the practical applications of zinc-ion hybrid supercapacitors. To address these issues, a structural engineering of carbonaceous cathode into a hierarchical porous architecture based on a hydrothermal-assisted molecular-scale mixing strategy is proposed. The key structures of the as-fabricated hierarchical porous carbon consist of high specific surface area, well-interconnected hierarchical porous morphology and favorable graphitization degree with good conductivity, which promises great conceptual and technological potential for high-performance zinc-ion storage. It is demonstrated that the high specific surface area supply sufficient active sites for zinc-ion storage, and collectively, the valuable hierarchical porous structure and high electric conductivity are beneficial for rapid transfer/diffusion of zinc ion. An ultrahigh capacity of 305 mAh g−1, a high energy density of 118 Wh kg−1, good rate capability, and excellent cycling stability of over 94.9% after 20000 cycles at a high current density of 2 A g−1 can be achieved when hierarchical porous carbon is used as the cathode of a zinc-ion hybrid supercapacitor. [Display omitted] •High-energy-density and ultra-stable zinc-ion hybrid supercapacitors are realized.•Hierarchical porous carbon is obtained based on a purposeful hydrothermal-assisted molecular-scale mixing strategy.•High surface area, hierarchical porous architecture and favorable graphitization degree is favorable to zinc-ion storage. |
| ArticleNumber | 134999 |
| Author | Dong, Hanwu Yu, Peifeng Liu, Yingliang Zeng, Yuan Zheng, Mingtao Liang, Yeru Xiao, Yong Zeng, Yinxiang Hu, Hang Lu, Xihong |
| Author_xml | – sequence: 1 givenname: Peifeng surname: Yu fullname: Yu, Peifeng organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China – sequence: 2 givenname: Yuan surname: Zeng fullname: Zeng, Yuan organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China – sequence: 3 givenname: Yinxiang surname: Zeng fullname: Zeng, Yinxiang organization: MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China – sequence: 4 givenname: Hanwu surname: Dong fullname: Dong, Hanwu organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China – sequence: 5 givenname: Hang surname: Hu fullname: Hu, Hang organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China – sequence: 6 givenname: Yingliang surname: Liu fullname: Liu, Yingliang email: tliuyl@scau.edu.cn organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China – sequence: 7 givenname: Mingtao surname: Zheng fullname: Zheng, Mingtao organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China – sequence: 8 givenname: Yong surname: Xiao fullname: Xiao, Yong organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China – sequence: 9 givenname: Xihong surname: Lu fullname: Lu, Xihong email: luxh6@mail.sysu.edu.cn organization: MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China – sequence: 10 givenname: Yeru surname: Liang fullname: Liang, Yeru email: liangyr@scau.edu.cn organization: College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, PR China |
| BookMark | eNqNkEGLFDEQhYOs4OzqbzDgOWPS6U53Dh6GxVVhwYueQ3W6ZiZDm7SV7oX27v82a4sHLy4UFBTvvar6rtlVTBEZe63kXkll3l72OKKfodS-ksrula6ttc_YTnWtFrpr7BXbSam0qE1nXrDrnC9Syta0csd-Hvw54EOIJ34Op7PAiHRaxYAxh3nlEAe-jDOByDP0I_IfIXoRUuTntacw8LxMSB4m8GFOlHm_coynEBFpy0QCKis8jHxKlJbMPVBfAn6P53L5QviSPT_CmPHVn37Dvt69_3L7Udx__vDp9nAvvO7kLCoJBmu0nW6M7NqmHSpEX_W1qiV23pjaoj1WRlXWywZg6I8KwTS91ShbAH3D3my5E6XvC-bZXdJCsax0la50LTul26J6t6k8pZwJj648B3P5uoAIo1PSPZJ3F_eXvHsk7zbyxd_-458ofANan-A8bE4sEB4KO5d9wOhxCFT0bkjhvxm_AA-iqN0 |
| CitedBy_id | crossref_primary_10_1016_j_jcis_2022_11_030 crossref_primary_10_1016_j_est_2023_106715 crossref_primary_10_1002_celc_202100029 crossref_primary_10_1016_j_jcis_2024_05_048 crossref_primary_10_1007_s11664_024_11537_4 crossref_primary_10_1016_j_est_2022_104252 crossref_primary_10_1016_j_electacta_2021_138170 crossref_primary_10_1016_j_est_2023_110370 crossref_primary_10_1002_adfm_202007843 crossref_primary_10_3103_S1068375521050070 crossref_primary_10_1016_j_carbon_2022_07_012 crossref_primary_10_1007_s11664_021_08959_9 crossref_primary_10_3390_en13215847 crossref_primary_10_1002_aenm_202300630 crossref_primary_10_1007_s40843_021_2006_y crossref_primary_10_1016_j_diamond_2019_107603 crossref_primary_10_1016_j_diamond_2025_112652 crossref_primary_10_1002_anie_202014766 crossref_primary_10_1016_j_jcis_2023_03_024 crossref_primary_10_1016_j_est_2023_110368 crossref_primary_10_1002_aenm_202202303 crossref_primary_10_1002_aenm_202001705 crossref_primary_10_3390_molecules28207187 crossref_primary_10_1016_j_jpowsour_2022_232347 crossref_primary_10_1002_ente_202100297 crossref_primary_10_1016_j_jechem_2022_03_051 crossref_primary_10_1007_s42114_023_00636_1 crossref_primary_10_1016_j_est_2021_103385 crossref_primary_10_1016_j_nanoen_2021_106070 crossref_primary_10_1016_j_est_2022_106378 crossref_primary_10_1016_j_jelechem_2020_114972 crossref_primary_10_1016_j_mtchem_2023_101476 crossref_primary_10_1016_j_est_2025_115298 crossref_primary_10_3389_fchem_2020_00663 crossref_primary_10_1007_s11581_024_05833_6 crossref_primary_10_1016_j_ccr_2024_216097 crossref_primary_10_1016_j_nanoen_2023_108290 crossref_primary_10_1016_j_jpowsour_2024_236140 crossref_primary_10_1016_j_jcis_2022_04_022 crossref_primary_10_1039_D3NR01178J crossref_primary_10_1016_j_apsusc_2021_152247 crossref_primary_10_1016_j_jpowsour_2024_234638 crossref_primary_10_1016_j_est_2023_106855 crossref_primary_10_1016_j_cej_2025_164974 crossref_primary_10_1039_D1NR03215A crossref_primary_10_1002_slct_202001552 crossref_primary_10_1016_j_jcis_2023_12_144 crossref_primary_10_1016_j_est_2025_116712 crossref_primary_10_1007_s40820_023_01065_x crossref_primary_10_1016_j_carbon_2022_09_056 crossref_primary_10_26599_NR_2025_94907031 crossref_primary_10_1002_adfm_202112151 crossref_primary_10_1002_batt_202500161 crossref_primary_10_1016_j_jpowsour_2023_233114 crossref_primary_10_1016_j_jcis_2021_04_114 crossref_primary_10_1039_D4RA04681A crossref_primary_10_3390_batteries9080429 crossref_primary_10_1016_j_est_2023_108228 crossref_primary_10_1016_j_jpowsour_2023_232789 crossref_primary_10_1016_j_carbon_2021_08_084 crossref_primary_10_1002_ange_202014766 crossref_primary_10_1002_batt_202000312 crossref_primary_10_1039_D3SE00565H crossref_primary_10_1002_cey2_69 crossref_primary_10_1002_batt_202300175 crossref_primary_10_1002_cey2_271 crossref_primary_10_1016_j_carbon_2021_04_093 crossref_primary_10_1016_j_cej_2021_133241 crossref_primary_10_1016_S1872_5805_24_60881_4 crossref_primary_10_1016_j_carbon_2021_05_049 crossref_primary_10_1016_j_cej_2025_162004 crossref_primary_10_1016_j_jpowsour_2022_231743 crossref_primary_10_1016_j_susmat_2022_e00536 crossref_primary_10_1016_j_micromeso_2022_111721 crossref_primary_10_1039_D4EE02163K crossref_primary_10_1039_D5TA03521J crossref_primary_10_1016_j_mtsust_2024_100676 crossref_primary_10_1002_smll_202304172 crossref_primary_10_1016_j_gee_2023_01_002 crossref_primary_10_1002_advs_202406235 crossref_primary_10_1039_D4QI02657H crossref_primary_10_1016_j_est_2024_112002 crossref_primary_10_1016_j_ceramint_2020_02_175 crossref_primary_10_1016_j_est_2023_109571 crossref_primary_10_1016_j_est_2023_110320 crossref_primary_10_1016_j_jpowsour_2021_230663 crossref_primary_10_1002_celc_202001322 crossref_primary_10_1007_s12598_025_03509_2 crossref_primary_10_1002_aenm_202003994 crossref_primary_10_1002_cite_202300054 crossref_primary_10_1016_j_est_2022_105089 crossref_primary_10_1002_cssc_202500787 crossref_primary_10_1016_j_jiec_2024_11_011 crossref_primary_10_1002_celc_202100282 crossref_primary_10_1016_j_jcis_2022_12_170 crossref_primary_10_1016_j_cej_2021_131071 crossref_primary_10_1016_j_carbon_2021_10_060 crossref_primary_10_1016_j_est_2023_108794 crossref_primary_10_1002_aenm_202100201 crossref_primary_10_1007_s40820_021_00588_5 crossref_primary_10_1002_smll_202003174 crossref_primary_10_1088_1361_6528_abdb17 crossref_primary_10_1016_j_pmatsci_2020_100716 crossref_primary_10_20517_energymater_2024_266 crossref_primary_10_1080_21663831_2023_2178860 crossref_primary_10_1016_j_cej_2025_166437 crossref_primary_10_1016_j_electacta_2020_135804 crossref_primary_10_1002_batt_202100034 crossref_primary_10_1002_smll_202504629 crossref_primary_10_1016_j_rser_2021_111288 crossref_primary_10_1016_j_cej_2023_146408 crossref_primary_10_1016_j_ccr_2023_215056 crossref_primary_10_1021_acsami_5c10120 crossref_primary_10_1016_j_electacta_2022_141312 crossref_primary_10_1002_cssc_202002931 crossref_primary_10_1016_j_cej_2025_162914 crossref_primary_10_1002_adsu_202400780 crossref_primary_10_1002_slct_202304071 crossref_primary_10_1016_j_jpowsour_2024_234146 crossref_primary_10_1002_cssc_202100299 crossref_primary_10_1007_s12274_022_4726_3 crossref_primary_10_1016_j_jelechem_2020_114936 crossref_primary_10_1016_S1872_5805_22_60642_5 crossref_primary_10_1007_s11581_022_04587_3 |
| Cites_doi | 10.1016/j.synthmet.2014.04.014 10.1039/C4NR03574G 10.1016/j.carbon.2018.02.021 10.1002/adma.201702698 10.1016/j.electacta.2017.10.166 10.1021/acsami.7b14390 10.1002/admi.201800430 10.1021/acs.jpcc.7b09494 10.1002/aenm.201800266 10.1016/j.electacta.2018.12.070 10.1002/adma.201705580 10.1039/C6CP01285J 10.1016/j.cej.2017.12.019 10.1007/s40820-019-0278-9 10.1016/j.electacta.2019.03.165 10.1039/C9TA02678A 10.1039/c3ee22325f 10.1039/C6EE03367A 10.1039/c3ta10897j 10.1016/j.ensm.2018.10.020 10.1002/adma.201600586 10.1021/ja402552h 10.1002/adma.201205332 10.1016/j.ensm.2018.01.003 10.1039/C6SC03961H 10.1016/j.rser.2017.04.117 10.1002/adma.201802396 10.1016/j.electacta.2017.01.163 10.1016/j.micromeso.2015.06.041 10.1021/acs.nanolett.9b00697 10.1039/C8NR03256D 10.1016/j.electacta.2018.10.014 10.1002/smll.201703850 10.1002/admi.201700004 10.1039/C7EE01040K 10.1021/acsnano.7b09003 10.1016/j.cej.2015.08.014 10.1039/C7TA08046H 10.1002/aenm.201803865 10.1002/smll.201700358 10.1002/bbb.198 10.1038/s41467-018-04060-8 10.1039/C8CC05366A 10.1016/j.electacta.2014.04.001 10.1021/nn302147s 10.1016/j.jpowsour.2018.04.103 10.1002/adfm.201800508 10.1039/C8EE01415A 10.1021/ja312241y 10.1002/batt.201800138 10.1016/j.jpowsour.2017.06.029 10.1016/j.nanoen.2017.09.041 10.1016/j.carbon.2017.07.050 10.1016/j.mseb.2013.12.004 10.1038/ncomms15520 10.1016/j.nanoen.2018.06.017 10.1039/C8NR03889A 10.1016/j.electacta.2018.01.172 10.1016/j.electacta.2017.11.116 10.1021/acssuschemeng.6b00388 10.1002/adma.201701677 10.1002/adfm.201806722 10.1016/j.ensm.2017.12.022 10.1039/C6RA21607B |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Dec 10, 2019 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Dec 10, 2019 |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1016/j.electacta.2019.134999 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Architecture |
| EISSN | 1873-3859 |
| ExternalDocumentID | 10_1016_j_electacta_2019_134999 S0013468619318705 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- SC5 SCB SCH SEW T9H VH1 WUQ XOL ZY4 ~HD 7SR 7U5 8BQ 8FD AFXIZ AGCQF AGRNS JG9 L7M SSH |
| ID | FETCH-LOGICAL-c380t-20a6e4e9835608757d2eec2b4140e8c6649e9f26129c05aadbf1ea65b93e07aa3 |
| ISICitedReferencesCount | 153 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494834100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-4686 |
| IngestDate | Mon Jul 14 09:33:38 EDT 2025 Sat Nov 29 07:35:21 EST 2025 Tue Nov 18 22:11:23 EST 2025 Fri Feb 23 02:25:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cycling stability Hierarchical porous carbon High energy density Molecular-scale mixing strategy Zinc-ion hybrid supercapacitors |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c380t-20a6e4e9835608757d2eec2b4140e8c6649e9f26129c05aadbf1ea65b93e07aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2323408137 |
| PQPubID | 2045485 |
| ParticipantIDs | proquest_journals_2323408137 crossref_citationtrail_10_1016_j_electacta_2019_134999 crossref_primary_10_1016_j_electacta_2019_134999 elsevier_sciencedirect_doi_10_1016_j_electacta_2019_134999 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-10 |
| PublicationDateYYYYMMDD | 2019-12-10 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Electrochimica acta |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Zhang, Ou, Cui, Ma, Yang, Tang (bib8) 2019; 29 Sun, Zheng, Hu, Dong, Liang, Xiao, Lei, Liu (bib65) 2018; 336 Hao, Mou, Zhang, Dong, Liu, Xu, Kang (bib25) 2018; 259 Wang, Wang, Tang (bib27) 2018; 13 Charles, Feygenson, Page, Neuefeind, Xu, Teng (bib13) 2017; 8 Liu, Chi, Zhang, Chen, Zhang, Zhu, Cao (bib14) 2018; 54 Da-Wei, Feng, Min, Gao Qing, Hui-Ming (bib34) 2010; 47 Huang, Liang, Hu, Liu, Cai, Dong, Zheng, Xiao, Liu (bib46) 2017; 5 Han, Wang, Liu, Li, Sun, Zhang, An, Yi, Ma (bib29) 2018; 10 Liang, Chen, Zhuang, Liu, Fu, Zhang, Wu, Matyjaszewski (bib49) 2017; 8 Yang, Cui, Ge, Tang, Liu, Li, Li, Zhang, Liang, Zhi (bib12) 2018; 50 Xu, Tan, Zeng, Chen, Wu, Zhao, Ni, Tao, Ikram, Ji (bib3) 2016; 28 Li, Liu, Liang, Huang, Huan, Zhu, Pei, Xue, Tang, Wang, Li, Zhi (bib57) 2018; 12 Lang, Li, Zhang, Ding, Zapien, Tang (bib23) 2019; 2 Zhao, Lei, He, Yuan, Yun, Ni, Lv, Li, Yang, Kang, Lu (bib9) 2018; 8 Ma, Cheng, Dong, Liu, Mou, Zhao, Wang, Ren, Wu, Xu, Kang (bib30) 2019; 20 Funke, Ziegler (bib43) 2010; 4 Li, Li, Shen (bib47) 2013; 25 Xiao, Han, Xiao, Song, Zhang, Kong, Yang, Zhi (bib18) 2018; 10 Ding, Xu, Graff, Zhang, Sushko, Chen, Shao, Engelhard, Nie, Xiao, Liu, Sushko, Liu, Zhang (bib51) 2013; 135 Madhu, Veeramani, Chen, Veerakumar, Liu, Miyamoto (bib36) 2016; 18 Islam, Alfaruqi, Song, Kim, Pham, Jo, Kim, Mathew, Baboo, Xiu, Kim (bib56) 2017; 26 Hashemi, Kasiri, La Mantia (bib10) 2017; 258 Sun, Tian, Li, Meng, Wang, Wang, Yin, Fu (bib39) 2013; 1 Chou, Huang, Doong (bib35) 2014; 194 Li, Yu, Yang, Zhao, Zhang, Huang, Liu, Guo, Qiu (bib59) 2017; 10 Wang, Zhou, Gao, Zhu, Liu, Gao, Wu (bib7) 2019; 298 Zhang, Xu, Ma, Li, Wang, Zhang, Li, Liu, Cheng, Du, Cheng, Du (bib60) 2017; 29 Liang, Cao, Ming, Zhang, Anjum, Cui, Cavallo, Alshareef (bib53) 2019; 19 Jain, Tripathi (bib38) 2014; 183 Gonzalez-Garcia (bib41) 2018; 82 Chen, Zhang, Liang, Kong, Guan, Chen, Wu, Yu (bib58) 2012; 6 Wu, Yao, Song, Zhang, Chen, Yang, Tang (bib22) 2019; 9 Dong, Ma, Yang, Ling, Liu, Cheng, Xu, Li, Yang, Kang (bib31) 2018; 13 Pan, Cao, Xie, Zhang, Xia (bib20) 2018; 292 Jain, Xu, Jayaraman, Balasubramanian, Lee, Srinivasan (bib40) 2015; 218 Zeng, Meng, Lai, Zhang, Yu, Fang, Wu, Tong, Lu (bib1) 2017; 29 Lei, Su, Tian (bib44) 2016; 6 Zhang, Wang, Lv, Zhang, Liang, Zheng, Kang, Yang (bib19) 2017; 10 Liu, Cai, Zhao, Liang, Zheng, Hu, Dong, Jiang, Liu, Xiao (bib62) 2017; 360 Lahan, Boruah, Hazarika, Das (bib15) 2017; 121 Xu, Li, Wei, He, Du, Chu, Qin, Yang, Kang (bib55) 2014; 133 Deng, Xiong, Wang, Zheng, Wang (bib42) 2016; 4 Wu, Zhang, Yan, Xiong, He, He, Xu, Mai (bib54) 2018; 14 Du, Zheng, Lv, Deng, Pan, Kang, Yang (bib5) 2017; 4 Huang, Mou, Liu, Wang, Dong, Kang, Xu (bib26) 2019; 11 Jain, Balasubramanian, Srinivasan (bib45) 2016; 283 Sevilla, Ferrero, Diez, Fuertes (bib63) 2018; 131 Xia, Guo, Lei, Liang, Zhao, Alshareef (bib17) 2018; 30 Dong, Yang, Yang, Li, Wu, Wang (bib32) 2019; 7 Luo, Lv, Deng, Zhou, Pan, Niu, Li, Kang, Yang (bib48) 2017; 13 Zeng, Lai, Han, Zhang, Xie, Lu (bib4) 2018; 30 Biswal, Banerjee, Deo, Ogale (bib61) 2013; 6 Long, Xi, Fan, Guankui, Tengfei, Kai, Yawei, Yi, Yanfeng, Mingtao (bib52) 2013; 135 Wu, Wang, Huang, Zou, Chen, Cheng, Jiang, Gao, Niu (bib21) 2019; 306 Lee, Jeong (bib16) 2018; 265 Shi, Lv, Zhang, Wang, Ling, He, Kang, Yang (bib6) 2018; 28 Ma, Chen, Li, Ruan, Tang, Liu, Wang, Huang, Pei, Zapien, Zhi (bib28) 2018; 11 Hao, Zhao, Tian, Li, Sang, Yu, Cai, Liu, Wong, Umar (bib37) 2014; 6 Wei, Zou, Gao (bib66) 2017; 123 Wan, Zhang, Dai, Wang, Niu, Chen (bib50) 2018; 9 Liang, Zhang, Wu, Ni, Zhang (bib2) 2018; 5 Jiang, Xu, Wu, Dong, Li, Kang (bib24) 2017; 229 Niu, Liang, Shao, Liu, Dou, Li, Huang, Wang (bib33) 2017; 41 Shao, Niu, Liang, Liu, Zhang, Dou, Huang, Wang (bib64) 2017; 9 Chen, Zhai, Chen, Li, Ma, Ai, Xu, Hou, Zhang, Feng, Si, Ci (bib11) 2018; 392 Lee (10.1016/j.electacta.2019.134999_bib16) 2018; 265 Jiang (10.1016/j.electacta.2019.134999_bib24) 2017; 229 Wu (10.1016/j.electacta.2019.134999_bib54) 2018; 14 Wang (10.1016/j.electacta.2019.134999_bib7) 2019; 298 Charles (10.1016/j.electacta.2019.134999_bib13) 2017; 8 Chou (10.1016/j.electacta.2019.134999_bib35) 2014; 194 Jain (10.1016/j.electacta.2019.134999_bib45) 2016; 283 Li (10.1016/j.electacta.2019.134999_bib59) 2017; 10 Han (10.1016/j.electacta.2019.134999_bib29) 2018; 10 Funke (10.1016/j.electacta.2019.134999_bib43) 2010; 4 Xia (10.1016/j.electacta.2019.134999_bib17) 2018; 30 Liu (10.1016/j.electacta.2019.134999_bib62) 2017; 360 Ding (10.1016/j.electacta.2019.134999_bib51) 2013; 135 Sun (10.1016/j.electacta.2019.134999_bib65) 2018; 336 Long (10.1016/j.electacta.2019.134999_bib52) 2013; 135 Islam (10.1016/j.electacta.2019.134999_bib56) 2017; 26 Wei (10.1016/j.electacta.2019.134999_bib66) 2017; 123 Xu (10.1016/j.electacta.2019.134999_bib55) 2014; 133 Hashemi (10.1016/j.electacta.2019.134999_bib10) 2017; 258 Yang (10.1016/j.electacta.2019.134999_bib12) 2018; 50 Zhao (10.1016/j.electacta.2019.134999_bib9) 2018; 8 Shi (10.1016/j.electacta.2019.134999_bib6) 2018; 28 Liu (10.1016/j.electacta.2019.134999_bib14) 2018; 54 Jain (10.1016/j.electacta.2019.134999_bib38) 2014; 183 Du (10.1016/j.electacta.2019.134999_bib5) 2017; 4 Chen (10.1016/j.electacta.2019.134999_bib58) 2012; 6 Lahan (10.1016/j.electacta.2019.134999_bib15) 2017; 121 Li (10.1016/j.electacta.2019.134999_bib47) 2013; 25 Pan (10.1016/j.electacta.2019.134999_bib20) 2018; 292 Madhu (10.1016/j.electacta.2019.134999_bib36) 2016; 18 Li (10.1016/j.electacta.2019.134999_bib57) 2018; 12 Zhang (10.1016/j.electacta.2019.134999_bib19) 2017; 10 Luo (10.1016/j.electacta.2019.134999_bib48) 2017; 13 Chen (10.1016/j.electacta.2019.134999_bib11) 2018; 392 Wu (10.1016/j.electacta.2019.134999_bib22) 2019; 9 Wang (10.1016/j.electacta.2019.134999_bib27) 2018; 13 Gonzalez-Garcia (10.1016/j.electacta.2019.134999_bib41) 2018; 82 Deng (10.1016/j.electacta.2019.134999_bib42) 2016; 4 Lei (10.1016/j.electacta.2019.134999_bib44) 2016; 6 Sevilla (10.1016/j.electacta.2019.134999_bib63) 2018; 131 Wu (10.1016/j.electacta.2019.134999_bib21) 2019; 306 Liang (10.1016/j.electacta.2019.134999_bib53) 2019; 19 Zeng (10.1016/j.electacta.2019.134999_bib4) 2018; 30 Dong (10.1016/j.electacta.2019.134999_bib32) 2019; 7 Biswal (10.1016/j.electacta.2019.134999_bib61) 2013; 6 Hao (10.1016/j.electacta.2019.134999_bib37) 2014; 6 Xiao (10.1016/j.electacta.2019.134999_bib18) 2018; 10 Liang (10.1016/j.electacta.2019.134999_bib2) 2018; 5 Lang (10.1016/j.electacta.2019.134999_bib23) 2019; 2 Huang (10.1016/j.electacta.2019.134999_bib46) 2017; 5 Wan (10.1016/j.electacta.2019.134999_bib50) 2018; 9 Da-Wei (10.1016/j.electacta.2019.134999_bib34) 2010; 47 Hao (10.1016/j.electacta.2019.134999_bib25) 2018; 259 Sun (10.1016/j.electacta.2019.134999_bib39) 2013; 1 Ma (10.1016/j.electacta.2019.134999_bib28) 2018; 11 Zhang (10.1016/j.electacta.2019.134999_bib60) 2017; 29 Zeng (10.1016/j.electacta.2019.134999_bib1) 2017; 29 Huang (10.1016/j.electacta.2019.134999_bib26) 2019; 11 Dong (10.1016/j.electacta.2019.134999_bib31) 2018; 13 Jain (10.1016/j.electacta.2019.134999_bib40) 2015; 218 Liang (10.1016/j.electacta.2019.134999_bib49) 2017; 8 Shao (10.1016/j.electacta.2019.134999_bib64) 2017; 9 Niu (10.1016/j.electacta.2019.134999_bib33) 2017; 41 Xu (10.1016/j.electacta.2019.134999_bib3) 2016; 28 Zhang (10.1016/j.electacta.2019.134999_bib8) 2019; 29 Ma (10.1016/j.electacta.2019.134999_bib30) 2019; 20 |
| References_xml | – volume: 18 start-page: 16466 year: 2016 ident: bib36 article-title: Functional porous carbon-ZnO nanocomposites for high-performance biosensors and energy storage applications publication-title: Phys. Chem. Chem. Phys. Pccp – volume: 194 start-page: 29 year: 2014 end-page: 37 ident: bib35 article-title: Fabrication of hierarchically ordered porous carbons using sugarcane bagasse as the scaffold for supercapacitor applications publication-title: Synthetic Met – volume: 9 start-page: 42797 year: 2017 end-page: 42805 ident: bib64 article-title: Mesopore- and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes publication-title: ACS Appl. Mater. Interfaces – volume: 121 start-page: 26241 year: 2017 end-page: 26249 ident: bib15 article-title: Anatase TiO publication-title: J. Phys. Chem. C – volume: 82 start-page: 1393 year: 2018 end-page: 1414 ident: bib41 article-title: Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications publication-title: Renew. Sustain. Energy Rev. – volume: 4 start-page: 1700004 year: 2017 ident: bib5 article-title: A three-layer all-in-one flexible graphene film used as an integrated supercapacitor publication-title: Adv Mater Interfaces – volume: 4 start-page: 160 year: 2010 end-page: 177 ident: bib43 article-title: Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering publication-title: Biofuels, Bioproducts and Biorefining – volume: 265 start-page: 430 year: 2018 end-page: 436 ident: bib16 article-title: Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a prussian blue electrode/aqueous electrolyte system for calcium-ion batteries publication-title: Electrochim. Acta – volume: 6 start-page: 107829 year: 2016 end-page: 107835 ident: bib44 article-title: Morphology evolution, formation mechanism and adsorption properties of hydrochars prepared by hydrothermal carbonization of corn stalk publication-title: RSC Adv. – volume: 360 start-page: 373 year: 2017 end-page: 382 ident: bib62 article-title: Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor publication-title: J. Power Sources – volume: 133 start-page: 254 year: 2014 end-page: 261 ident: bib55 article-title: Preparation and characterization of MnO publication-title: Electrochim. Acta – volume: 11 start-page: 49 year: 2019 ident: bib26 article-title: Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO publication-title: Nano-Micro Lett. – volume: 47 year: 2010 ident: bib34 article-title: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage publication-title: Angew. Chem. – volume: 30 start-page: 1705580 year: 2018 ident: bib17 article-title: Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode publication-title: Adv. Mater. – volume: 306 start-page: 446 year: 2019 end-page: 453 ident: bib21 article-title: Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries publication-title: Electrochim. Acta – volume: 131 start-page: 193 year: 2018 end-page: 200 ident: bib63 article-title: One-step synthesis of sltra-high surface area nanoporous carbons and their application for electrochemical energy storage publication-title: Carbon – volume: 9 start-page: 1803865 year: 2019 ident: bib22 article-title: A calcium-ion hybrid energy storage device with high capacity and long cycling life under room temperature publication-title: Adv. Energy Mater – volume: 12 start-page: 3140 year: 2018 end-page: 3148 ident: bib57 article-title: Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte publication-title: ACS Nano – volume: 10 start-page: 13083 year: 2018 end-page: 13091 ident: bib29 article-title: Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell publication-title: Nanoscale – volume: 2 start-page: 440 year: 2019 end-page: 447 ident: bib23 article-title: Sodium-ion hybrid battery combining an anion-intercalation cathode with an adsorption-type Anode for enhanced rate and cycling performance publication-title: Batteries & Supercaps – volume: 298 start-page: 552 year: 2019 end-page: 560 ident: bib7 article-title: Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes publication-title: Electrochim. Acta – volume: 50 start-page: 623 year: 2018 end-page: 631 ident: bib12 article-title: Porous single-crystal NaTi publication-title: Nano Energy – volume: 6 start-page: 1249 year: 2013 end-page: 1259 ident: bib61 article-title: From dead leaves to high energy density supercapacitors publication-title: Energy Environ. Sci. – volume: 19 start-page: 3199 year: 2019 end-page: 3206 ident: bib53 article-title: Aqueous zinc ion storage in MoS publication-title: Nano Lett. – volume: 28 start-page: 1800508 year: 2018 ident: bib6 article-title: Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up publication-title: Adv. Funct. Mater. – volume: 54 start-page: 9474 year: 2018 end-page: 9477 ident: bib14 article-title: Superior high rate capability of MgMn publication-title: Chem. Commun. – volume: 7 start-page: 13810 year: 2019 end-page: 13832 ident: bib32 article-title: Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors publication-title: J. Mater. Chem. – volume: 5 start-page: 24775 year: 2017 end-page: 24781 ident: bib46 article-title: Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitors publication-title: J. Mater. Chem. – volume: 25 start-page: 2474 year: 2013 end-page: 2480 ident: bib47 article-title: Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors publication-title: Adv. Mater. – volume: 183 start-page: 54 year: 2014 end-page: 60 ident: bib38 article-title: Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode publication-title: Mater Sci Eng B-Adv – volume: 13 start-page: 1700358 year: 2017 ident: bib48 article-title: A dual-function Na publication-title: Small – volume: 229 start-page: 422 year: 2017 end-page: 428 ident: bib24 article-title: Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life publication-title: Electrochim. Acta – volume: 41 start-page: 285 year: 2017 end-page: 292 ident: bib33 article-title: Tremella-like N,O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors publication-title: Nano Energy – volume: 135 start-page: 5921 year: 2013 end-page: 5929 ident: bib52 article-title: Controlling the effective surface area and pore size distribution of sp publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 5222 year: 2016 end-page: 5228 ident: bib3 article-title: A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes publication-title: Adv. Mater. – volume: 336 start-page: 550 year: 2018 end-page: 561 ident: bib65 article-title: From biomass wastes to vertically aligned graphene nanosheet arrays: a catalyst-free synthetic strategy towards high-quality graphene for electrochemical energy storage publication-title: Chem. Eng. J. – volume: 30 start-page: 1802396 year: 2018 ident: bib4 article-title: Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries publication-title: Adv. Mater. – volume: 8 start-page: 2101 year: 2017 ident: bib49 article-title: Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes publication-title: Chem. Sci. – volume: 283 start-page: 789 year: 2016 end-page: 805 ident: bib45 article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review publication-title: Chem. Eng. J. – volume: 8 start-page: 1800266 year: 2018 ident: bib9 article-title: Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector publication-title: Adv. Energy Mater. – volume: 10 start-page: 10351 year: 2018 end-page: 10356 ident: bib18 article-title: A facile and processable integration strategy towards schiff-base polymer-derived carbonaceous materials with high lithium storage performance publication-title: Nanoscale – volume: 6 start-page: 12120 year: 2014 end-page: 12129 ident: bib37 article-title: Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode publication-title: Nanoscale – volume: 259 start-page: 170 year: 2018 end-page: 178 ident: bib25 article-title: Electrochemically induced spinel-layered phase transition of Mn publication-title: Electrochim. Acta – volume: 6 start-page: 7092 year: 2012 end-page: 7102 ident: bib58 article-title: Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors publication-title: ACS Nano – volume: 135 start-page: 4450 year: 2013 end-page: 4456 ident: bib51 article-title: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1702698 year: 2017 ident: bib1 article-title: An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode publication-title: Adv. Mater. – volume: 10 start-page: 370 year: 2017 end-page: 376 ident: bib19 article-title: Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase publication-title: Energy Environ. Sci. – volume: 1 start-page: 6462 year: 2013 end-page: 6470 ident: bib39 article-title: From coconut shell to porous graphene-like nanosheets for high-power supercapacitors publication-title: J. Mater. Chem. – volume: 11 start-page: 2521 year: 2018 end-page: 2530 ident: bib28 article-title: Initiating a mild aqueous electrolyte Co publication-title: Energy Environ. Sci. – volume: 4 start-page: 3750 year: 2016 end-page: 3756 ident: bib42 article-title: Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons publication-title: Acs Sustain Chem Eng – volume: 10 start-page: 1958 year: 2017 end-page: 1965 ident: bib59 article-title: A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors publication-title: Energy Environ. Sci. – volume: 123 start-page: 471 year: 2017 end-page: 480 ident: bib66 article-title: Chemical crosslinking engineered nitrogen-doped carbon aerogels from polyaniline-boric acid-polyvinyl alcohol gels for high-performance electrochemical capacitors publication-title: Carbon – volume: 29 start-page: 1806722 year: 2019 ident: bib8 article-title: High-performance cathode based on self-templated 3D porous microcrystalline carbon with improved anion adsorption and intercalation publication-title: Adv. Funct. Mater. – volume: 8 start-page: 15520 year: 2017 ident: bib13 article-title: Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage publication-title: Nat. Commun. – volume: 13 start-page: 1 year: 2018 end-page: 7 ident: bib27 article-title: A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications publication-title: Energy Storage Mater – volume: 218 start-page: 55 year: 2015 end-page: 61 ident: bib40 article-title: Mesoporous activated carbons with enhanced porosity by pptimal hydrothermal pre-treatment of biomass for supercapacitor applications publication-title: Microporous Mesoporous Mater. – volume: 13 start-page: 96 year: 2018 end-page: 102 ident: bib31 article-title: Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors publication-title: Energy Storage Mater – volume: 5 start-page: 1800430 year: 2018 ident: bib2 article-title: Interface engineering of carbon-based nanocomposites for advanced electrochemical energy storage publication-title: Adv Mater Interfaces – volume: 392 start-page: 116 year: 2018 end-page: 122 ident: bib11 article-title: Nanostructured LiMn publication-title: J. Power Sources – volume: 9 start-page: 1656 year: 2018 ident: bib50 article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers publication-title: Nat. Commun. – volume: 14 start-page: 1703850 year: 2018 ident: bib54 article-title: Graphene scroll-coated α-MnO publication-title: Small – volume: 26 start-page: 815 year: 2017 end-page: 819 ident: bib56 article-title: Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications publication-title: J Energy Chem – volume: 258 start-page: 703 year: 2017 end-page: 708 ident: bib10 article-title: The effect of polyethyleneimine as an electrolyte additive on zinc electrodeposition mechanism in aqueous zinc-ion batteries publication-title: Electrochim. Acta – volume: 20 start-page: 335 year: 2019 end-page: 342 ident: bib30 article-title: Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors publication-title: Energy Storage Mater. – volume: 29 start-page: 1701677 year: 2017 ident: bib60 article-title: Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors publication-title: Adv. Mater. – volume: 292 start-page: 935 year: 2018 end-page: 941 ident: bib20 article-title: Nickel nanoparticles activated highly porous carbon for excellent sodium storage publication-title: Electrochim. Acta – volume: 194 start-page: 29 year: 2014 ident: 10.1016/j.electacta.2019.134999_bib35 article-title: Fabrication of hierarchically ordered porous carbons using sugarcane bagasse as the scaffold for supercapacitor applications publication-title: Synthetic Met doi: 10.1016/j.synthmet.2014.04.014 – volume: 6 start-page: 12120 year: 2014 ident: 10.1016/j.electacta.2019.134999_bib37 article-title: Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode publication-title: Nanoscale doi: 10.1039/C4NR03574G – volume: 131 start-page: 193 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib63 article-title: One-step synthesis of sltra-high surface area nanoporous carbons and their application for electrochemical energy storage publication-title: Carbon doi: 10.1016/j.carbon.2018.02.021 – volume: 29 start-page: 1702698 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib1 article-title: An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode publication-title: Adv. Mater. doi: 10.1002/adma.201702698 – volume: 259 start-page: 170 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib25 article-title: Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.166 – volume: 9 start-page: 42797 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib64 article-title: Mesopore- and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14390 – volume: 5 start-page: 1800430 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib2 article-title: Interface engineering of carbon-based nanocomposites for advanced electrochemical energy storage publication-title: Adv Mater Interfaces doi: 10.1002/admi.201800430 – volume: 121 start-page: 26241 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib15 article-title: Anatase TiO2 as an anode material for rechargeable aqueous aluminum-ion batteries: Remarkable graphene induced aluminum ion storage phenomenon publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b09494 – volume: 8 start-page: 1800266 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib9 article-title: Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800266 – volume: 298 start-page: 552 year: 2019 ident: 10.1016/j.electacta.2019.134999_bib7 article-title: Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.070 – volume: 30 start-page: 1705580 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib17 article-title: Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode publication-title: Adv. Mater. doi: 10.1002/adma.201705580 – volume: 18 start-page: 16466 year: 2016 ident: 10.1016/j.electacta.2019.134999_bib36 article-title: Functional porous carbon-ZnO nanocomposites for high-performance biosensors and energy storage applications publication-title: Phys. Chem. Chem. Phys. Pccp doi: 10.1039/C6CP01285J – volume: 336 start-page: 550 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib65 article-title: From biomass wastes to vertically aligned graphene nanosheet arrays: a catalyst-free synthetic strategy towards high-quality graphene for electrochemical energy storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.019 – volume: 11 start-page: 49 year: 2019 ident: 10.1016/j.electacta.2019.134999_bib26 article-title: Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+ publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0278-9 – volume: 306 start-page: 446 year: 2019 ident: 10.1016/j.electacta.2019.134999_bib21 article-title: Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.165 – volume: 7 start-page: 13810 year: 2019 ident: 10.1016/j.electacta.2019.134999_bib32 article-title: Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors publication-title: J. Mater. Chem. doi: 10.1039/C9TA02678A – volume: 6 start-page: 1249 year: 2013 ident: 10.1016/j.electacta.2019.134999_bib61 article-title: From dead leaves to high energy density supercapacitors publication-title: Energy Environ. Sci. doi: 10.1039/c3ee22325f – volume: 26 start-page: 815 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib56 article-title: Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications publication-title: J Energy Chem – volume: 10 start-page: 370 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib19 article-title: Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03367A – volume: 1 start-page: 6462 year: 2013 ident: 10.1016/j.electacta.2019.134999_bib39 article-title: From coconut shell to porous graphene-like nanosheets for high-power supercapacitors publication-title: J. Mater. Chem. doi: 10.1039/c3ta10897j – volume: 20 start-page: 335 year: 2019 ident: 10.1016/j.electacta.2019.134999_bib30 article-title: Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.10.020 – volume: 28 start-page: 5222 year: 2016 ident: 10.1016/j.electacta.2019.134999_bib3 article-title: A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes publication-title: Adv. Mater. doi: 10.1002/adma.201600586 – volume: 135 start-page: 5921 year: 2013 ident: 10.1016/j.electacta.2019.134999_bib52 article-title: Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402552h – volume: 25 start-page: 2474 year: 2013 ident: 10.1016/j.electacta.2019.134999_bib47 article-title: Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors publication-title: Adv. Mater. doi: 10.1002/adma.201205332 – volume: 13 start-page: 96 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib31 article-title: Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2018.01.003 – volume: 8 start-page: 2101 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib49 article-title: Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes publication-title: Chem. Sci. doi: 10.1039/C6SC03961H – volume: 82 start-page: 1393 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib41 article-title: Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.04.117 – volume: 30 start-page: 1802396 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib4 article-title: Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201802396 – volume: 229 start-page: 422 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib24 article-title: Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.01.163 – volume: 218 start-page: 55 year: 2015 ident: 10.1016/j.electacta.2019.134999_bib40 article-title: Mesoporous activated carbons with enhanced porosity by pptimal hydrothermal pre-treatment of biomass for supercapacitor applications publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.06.041 – volume: 19 start-page: 3199 year: 2019 ident: 10.1016/j.electacta.2019.134999_bib53 article-title: Aqueous zinc ion storage in MoS2 by tuning the intercalation energy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00697 – volume: 10 start-page: 10351 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib18 article-title: A facile and processable integration strategy towards schiff-base polymer-derived carbonaceous materials with high lithium storage performance publication-title: Nanoscale doi: 10.1039/C8NR03256D – volume: 47 year: 2010 ident: 10.1016/j.electacta.2019.134999_bib34 article-title: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage publication-title: Angew. Chem. – volume: 292 start-page: 935 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib20 article-title: Nickel nanoparticles activated highly porous carbon for excellent sodium storage publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.10.014 – volume: 14 start-page: 1703850 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib54 article-title: Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery publication-title: Small doi: 10.1002/smll.201703850 – volume: 4 start-page: 1700004 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib5 article-title: A three-layer all-in-one flexible graphene film used as an integrated supercapacitor publication-title: Adv Mater Interfaces doi: 10.1002/admi.201700004 – volume: 10 start-page: 1958 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib59 article-title: A superhydrophilic “nanoglue” for stabilizing metal hydroxides onto carbon materials for high-energy and ultralong-life asymmetric supercapacitors publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01040K – volume: 12 start-page: 3140 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib57 article-title: Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte publication-title: ACS Nano doi: 10.1021/acsnano.7b09003 – volume: 283 start-page: 789 year: 2016 ident: 10.1016/j.electacta.2019.134999_bib45 article-title: Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.014 – volume: 5 start-page: 24775 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib46 article-title: Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitors publication-title: J. Mater. Chem. doi: 10.1039/C7TA08046H – volume: 9 start-page: 1803865 year: 2019 ident: 10.1016/j.electacta.2019.134999_bib22 article-title: A calcium-ion hybrid energy storage device with high capacity and long cycling life under room temperature publication-title: Adv. Energy Mater doi: 10.1002/aenm.201803865 – volume: 13 start-page: 1700358 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib48 article-title: A dual-function Na2SO4 template directed formation of cathode materials with a high content of sulfur nanodots for lithium-sulfur batteries publication-title: Small doi: 10.1002/smll.201700358 – volume: 4 start-page: 160 year: 2010 ident: 10.1016/j.electacta.2019.134999_bib43 article-title: Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering publication-title: Biofuels, Bioproducts and Biorefining doi: 10.1002/bbb.198 – volume: 9 start-page: 1656 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib50 article-title: Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers publication-title: Nat. Commun. doi: 10.1038/s41467-018-04060-8 – volume: 54 start-page: 9474 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib14 article-title: Superior high rate capability of MgMn2O4/rGO nanocomposites as cathode materials for aqueous rechargeable magnesium ion batteries publication-title: Chem. Commun. doi: 10.1039/C8CC05366A – volume: 133 start-page: 254 year: 2014 ident: 10.1016/j.electacta.2019.134999_bib55 article-title: Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.04.001 – volume: 6 start-page: 7092 year: 2012 ident: 10.1016/j.electacta.2019.134999_bib58 article-title: Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors publication-title: ACS Nano doi: 10.1021/nn302147s – volume: 392 start-page: 116 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib11 article-title: Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.04.103 – volume: 28 start-page: 1800508 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib6 article-title: Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: confining, trapping, blocking, and breaking up publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800508 – volume: 11 start-page: 2521 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib28 article-title: Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01415A – volume: 135 start-page: 4450 year: 2013 ident: 10.1016/j.electacta.2019.134999_bib51 article-title: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312241y – volume: 2 start-page: 440 year: 2019 ident: 10.1016/j.electacta.2019.134999_bib23 article-title: Sodium-ion hybrid battery combining an anion-intercalation cathode with an adsorption-type Anode for enhanced rate and cycling performance publication-title: Batteries & Supercaps doi: 10.1002/batt.201800138 – volume: 360 start-page: 373 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib62 article-title: Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.06.029 – volume: 41 start-page: 285 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib33 article-title: Tremella-like N,O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.041 – volume: 123 start-page: 471 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib66 article-title: Chemical crosslinking engineered nitrogen-doped carbon aerogels from polyaniline-boric acid-polyvinyl alcohol gels for high-performance electrochemical capacitors publication-title: Carbon doi: 10.1016/j.carbon.2017.07.050 – volume: 183 start-page: 54 year: 2014 ident: 10.1016/j.electacta.2019.134999_bib38 article-title: Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode publication-title: Mater Sci Eng B-Adv doi: 10.1016/j.mseb.2013.12.004 – volume: 8 start-page: 15520 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib13 article-title: Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage publication-title: Nat. Commun. doi: 10.1038/ncomms15520 – volume: 50 start-page: 623 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib12 article-title: Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.017 – volume: 10 start-page: 13083 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib29 article-title: Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell publication-title: Nanoscale doi: 10.1039/C8NR03889A – volume: 265 start-page: 430 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib16 article-title: Modulating the hydration number of calcium ions by varying the electrolyte concentration: Electrochemical performance in a prussian blue electrode/aqueous electrolyte system for calcium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.01.172 – volume: 258 start-page: 703 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib10 article-title: The effect of polyethyleneimine as an electrolyte additive on zinc electrodeposition mechanism in aqueous zinc-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.11.116 – volume: 4 start-page: 3750 year: 2016 ident: 10.1016/j.electacta.2019.134999_bib42 article-title: Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons publication-title: Acs Sustain Chem Eng doi: 10.1021/acssuschemeng.6b00388 – volume: 29 start-page: 1701677 year: 2017 ident: 10.1016/j.electacta.2019.134999_bib60 article-title: Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors publication-title: Adv. Mater. doi: 10.1002/adma.201701677 – volume: 29 start-page: 1806722 year: 2019 ident: 10.1016/j.electacta.2019.134999_bib8 article-title: High-performance cathode based on self-templated 3D porous microcrystalline carbon with improved anion adsorption and intercalation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806722 – volume: 13 start-page: 1 year: 2018 ident: 10.1016/j.electacta.2019.134999_bib27 article-title: A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2017.12.022 – volume: 6 start-page: 107829 year: 2016 ident: 10.1016/j.electacta.2019.134999_bib44 article-title: Morphology evolution, formation mechanism and adsorption properties of hydrochars prepared by hydrothermal carbonization of corn stalk publication-title: RSC Adv. doi: 10.1039/C6RA21607B |
| SSID | ssj0007670 |
| Score | 2.631565 |
| Snippet | Zinc-ion hybrid supercapacitor emerges as a promising energy storage device in benefit of the merits from both battery and supercapacitor. However, the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 134999 |
| SubjectTerms | Architecture Carbon Cathodes Cycles Cycling stability Electrical resistivity Energy storage Flux density Graphitization Hierarchical porous carbon High energy density Ion storage Molecular-scale mixing strategy Morphology Specific surface Stability Structural engineering Structural hierarchy Supercapacitors Surface area Zinc Zinc-ion hybrid supercapacitors |
| Title | Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture |
| URI | https://dx.doi.org/10.1016/j.electacta.2019.134999 https://www.proquest.com/docview/2323408137 |
| Volume | 327 |
| WOSCitedRecordID | wos000494834100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3859 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007670 issn: 0013-4686 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFIkPCUEoolDQHhCXais7a3ttblFJVVAUOKRVerLW643qKjIhiUvKnV_Dn2TGu3acKlA4cLGidTZOMs8z49nZ9wh501UigbjuMCG7PvPERDDpp5rpKEoS5SS-LlfPzwZiOAzH4-hzq_Wz2gtzNRV5Hq5W0ey_mhrGwNi4dfYfzF1_KAzAazA6HMHscPwrw_fURabLMgFSETNdbu5jKTaqLw3ZUjFdziWDtBB3TX3PcsUQAxfXuHnrYFHM9FxBCFVZKcQD6alecxYeoHR2ufiAtoXcHTtolZwn2NTcWJPYKPgbpR04idQEyN5Rh4LzwvQIZxNtIyjWsLXxP-fFGrn1WJavAND1e9_bjuITmX8rmhUMt5RfsL2sZVmt3lpz1vTULmdeUNFkG-ccCs54aBnErffmhlrA-l93a1QwBYrLw1JZCH8ltvRFh8jMaNSZNnm4h5_i49PBIB71x6O3s68MJcpwKd_qtdwhO13hR2Gb7PQ-9Mcf68AvAuFUghn41TfaCbde-3fJ0I20oMx1Ro_JI_uQQnsGXE9IS-cd8rDXsG-H3DuqpAI75EGD1fIp-VEjkG5BIAUE0iYCaYVAahBIbyCQJte0gUDaRCA1CKQGgbSJwF1yetwfHZ0wq_bBFA-dJdzDMtAeuAYOSTjKLKRdrVU38VzP0aEKAi_S0QQZ7yLl-FKmycTVMvCTiGtHSMmfkXb-JdfPCdUy0soRaSJC6QUc_BSXrhQ8dbQOQj_YI0H1t8fKUuGjIss0rnoeL-PaXjHaKzb22iNOPXFm2GBun_Kusmtsk1qTrMaAztsn71dIiK2LWcTwDMQ9yOS5ePHn0y_J_fXttk_ay3mhX5G76mqZLeavLXp_AcZY1eU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+high-energy-density+and+ultra-stable+zinc-ion+hybrid+supercapacitors+by+engineering+hierarchical+porous+carbon+architecture&rft.jtitle=Electrochimica+acta&rft.au=Yu%2C+Peifeng&rft.au=Zeng%2C+Yuan&rft.au=Zeng%2C+Yinxiang&rft.au=Dong%2C+Hanwu&rft.date=2019-12-10&rft.pub=Elsevier+BV&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=327&rft.spage=1&rft_id=info:doi/10.1016%2Fj.electacta.2019.134999&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |