Control of Semilinear Differential Equations with Moving Singularities

In this paper, we present a control problem related to a semilinear differential equation with a moving singularity, i.e., the singular point depends on a parameter. The particularity of the controllability condition resides in the fact that it depends on the singular point, which in turn depends on...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Fractal and fractional Ročník 9; číslo 4; s. 198
Hlavní autori: Precup, Radu, Stan, Andrei, Du, Wei-Shih
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.04.2025
Predmet:
ISSN:2504-3110, 2504-3110
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we present a control problem related to a semilinear differential equation with a moving singularity, i.e., the singular point depends on a parameter. The particularity of the controllability condition resides in the fact that it depends on the singular point, which in turn depends on the control variable. We provide sufficient conditions to ensure that the functional determining the control is continuous over the entire domain of the parameter. Lower and upper solutions techniques combined with a bisection algorithm is used to prove the controllability of the equation and to approximate the control. An example is given together with some numerical simulations. The results naturally extend to fractional differential equations.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract9040198