Personalized HeartSteps: A Reinforcement Learning Algorithm for Optimizing Physical Activity

With the recent proliferation of mobile health technologies, health scientists are increasingly interested in developing just-in-time adaptive interventions (JITAIs), typically delivered via notifications on mobile devices and designed to help users prevent negative health outcomes and to promote th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of ACM on interactive, mobile, wearable and ubiquitous technologies Ročník 4; číslo 1
Hlavní autoři: Liao, Peng, Greenewald, Kristjan, Klasnja, Predrag, Murphy, Susan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.03.2020
Témata:
ISSN:2474-9567, 2474-9567
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the recent proliferation of mobile health technologies, health scientists are increasingly interested in developing just-in-time adaptive interventions (JITAIs), typically delivered via notifications on mobile devices and designed to help users prevent negative health outcomes and to promote the adoption and maintenance of healthy behaviors. A JITAI involves a sequence of decision rules (i.e., treatment policies) that take the user's current context as input and specify whether and what type of intervention should be provided at the moment. In this work, we describe a reinforcement learning (RL) algorithm that continuously learns and improves the treatment policy embedded in the JITAI as data is being collected from the user. This work is motivated by our collaboration on designing an RL algorithm for HeartSteps V2 based on data collected HeartSteps V1. HeartSteps is a physical activity mobile health application. The RL algorithm developed in this work is being used in HeartSteps V2 to decide, five times per day, whether to deliver a context-tailored activity suggestion.
AbstractList With the recent proliferation of mobile health technologies, health scientists are increasingly interested in developing just-in-time adaptive interventions (JITAIs), typically delivered via notifications on mobile devices and designed to help users prevent negative health outcomes and to promote the adoption and maintenance of healthy behaviors. A JITAI involves a sequence of decision rules (i.e., treatment policies) that take the user's current context as input and specify whether and what type of intervention should be provided at the moment. In this work, we describe a reinforcement learning (RL) algorithm that continuously learns and improves the treatment policy embedded in the JITAI as data is being collected from the user. This work is motivated by our collaboration on designing an RL algorithm for HeartSteps V2 based on data collected HeartSteps V1. HeartSteps is a physical activity mobile health application. The RL algorithm developed in this work is being used in HeartSteps V2 to decide, five times per day, whether to deliver a context-tailored activity suggestion.With the recent proliferation of mobile health technologies, health scientists are increasingly interested in developing just-in-time adaptive interventions (JITAIs), typically delivered via notifications on mobile devices and designed to help users prevent negative health outcomes and to promote the adoption and maintenance of healthy behaviors. A JITAI involves a sequence of decision rules (i.e., treatment policies) that take the user's current context as input and specify whether and what type of intervention should be provided at the moment. In this work, we describe a reinforcement learning (RL) algorithm that continuously learns and improves the treatment policy embedded in the JITAI as data is being collected from the user. This work is motivated by our collaboration on designing an RL algorithm for HeartSteps V2 based on data collected HeartSteps V1. HeartSteps is a physical activity mobile health application. The RL algorithm developed in this work is being used in HeartSteps V2 to decide, five times per day, whether to deliver a context-tailored activity suggestion.
With the recent proliferation of mobile health technologies, health scientists are increasingly interested in developing just-in-time adaptive interventions (JITAIs), typically delivered via notifications on mobile devices and designed to help users prevent negative health outcomes and to promote the adoption and maintenance of healthy behaviors. A JITAI involves a sequence of decision rules (i.e., treatment policies) that take the user's current context as input and specify whether and what type of intervention should be provided at the moment. In this work, we describe a reinforcement learning (RL) algorithm that continuously learns and improves the treatment policy embedded in the JITAI as data is being collected from the user. This work is motivated by our collaboration on designing an RL algorithm for HeartSteps V2 based on data collected HeartSteps V1. HeartSteps is a physical activity mobile health application. The RL algorithm developed in this work is being used in HeartSteps V2 to decide, five times per day, whether to deliver a context-tailored activity suggestion.
Author Greenewald, Kristjan
Murphy, Susan
Klasnja, Predrag
Liao, Peng
Author_xml – sequence: 1
  givenname: Peng
  surname: Liao
  fullname: Liao, Peng
  organization: University of Michigan
– sequence: 2
  givenname: Kristjan
  surname: Greenewald
  fullname: Greenewald, Kristjan
  organization: IBM Research
– sequence: 3
  givenname: Predrag
  surname: Klasnja
  fullname: Klasnja, Predrag
  organization: University of Michigan
– sequence: 4
  givenname: Susan
  surname: Murphy
  fullname: Murphy, Susan
  organization: Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34527853$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1LwzAUhoNM3JzDfyC59KaatGnTeFeGOmGw4cedUJLsdIu0aW1SYfv1RpzgORfvgefhvTjnaGRbCwhdUnJDKUtvkySnhPATNIkZZ5FIMz76d4_RzLkPQggVwST8DI0TlsY8T5MJel9D71ora3OADV6A7P2Lh87d4QI_g7FV22towHq8DMwau8VFvW1743cNDhCvOm8ac_gB693eGS1rXGhvvozfX6DTStYOZsecoreH-9f5IlquHp_mxTLSCRc-2mQiYUpnSgNVGVU6DK-4IFqpKpfAhYK8kikXQoJQkmrNqExjqXgeZBZP0fVvb9e3nwM4XzbGaahraaEdXBmnPGFhcx7Uq6M6qAY2ZdebRvb78u8j8TcQXmYS
CitedBy_id crossref_primary_10_1093_jamia_ocab001
crossref_primary_10_1145_3661143
crossref_primary_10_1145_3637351
crossref_primary_10_1145_3448117
crossref_primary_10_2196_38342
crossref_primary_10_3390_ijerph19042267
crossref_primary_10_1002_sim_9748
crossref_primary_10_1109_JIOT_2023_3331715
crossref_primary_10_3390_ijerph18116059
crossref_primary_10_2196_47774
crossref_primary_10_1214_25_AOS2501
crossref_primary_10_1038_s41539_024_00289_9
crossref_primary_10_1093_abm_kaac051
crossref_primary_10_2196_24494
crossref_primary_10_3389_fdgth_2023_1215187
crossref_primary_10_1145_3686925
crossref_primary_10_1007_s10916_021_01773_0
crossref_primary_10_3389_fdgth_2025_1435917
crossref_primary_10_1038_s41746_020_0302_y
crossref_primary_10_3390_a15080255
crossref_primary_10_2196_52161
crossref_primary_10_1161_CIRCOUTCOMES_125_012416
crossref_primary_10_1145_3749476
crossref_primary_10_1177_02683962241280287
crossref_primary_10_1145_3432218
crossref_primary_10_2196_31327
crossref_primary_10_1111_insr_12583
crossref_primary_10_2196_77532
crossref_primary_10_1093_biomet_asab033
crossref_primary_10_1145_3596260
crossref_primary_10_1007_s10994_021_05995_8
crossref_primary_10_2196_65026
crossref_primary_10_1093_pnasnexus_pgaf246
crossref_primary_10_1145_3696425
crossref_primary_10_1287_msom_2023_0548
crossref_primary_10_1161_JAHA_123_030807
crossref_primary_10_1093_abm_kaab028
crossref_primary_10_1027_2151_2604_a000539
crossref_primary_10_1038_s41746_024_01028_5
crossref_primary_10_1177_09622802251366843
crossref_primary_10_1002_aaai_12126
crossref_primary_10_1002_aaai_12206
crossref_primary_10_2196_33568
crossref_primary_10_1214_25_AOAS2030
crossref_primary_10_2196_48974
crossref_primary_10_1080_08897077_2022_2060446
crossref_primary_10_1007_s10994_024_06526_x
crossref_primary_10_1093_biostatistics_kxae025
crossref_primary_10_2196_49669
crossref_primary_10_3389_fphar_2022_1094281
ContentType Journal Article
DBID NPM
7X8
DOI 10.1145/3381007
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 2474-9567
ExternalDocumentID 34527853
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U01 CA229437
– fundername: NIBIB NIH HHS
  grantid: U54 EB020404
– fundername: NIDA NIH HHS
  grantid: P50 DA039838
– fundername: NIAAA NIH HHS
  grantid: R01 AA023187
GroupedDBID AAKMM
AAYFX
ACM
ADPZR
AIKLT
ALMA_UNASSIGNED_HOLDINGS
GUFHI
LHSKQ
NPM
ROL
7X8
AEFXT
ID FETCH-LOGICAL-c379t-d6934bc6bce1b61bcccc7f790cbbf8ae79be8fa5799ae9ba1cc41a52ab78bcc42
IEDL.DBID 7X8
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000908394100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2474-9567
IngestDate Fri Jul 11 08:12:00 EDT 2025
Thu Jan 02 22:39:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mobile Health
Reinforcement Learning
Applied computing → Health care information systems
Computing methodologies → Machine learning algorithms
Just-in-Time Adaptive Intervention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-d6934bc6bce1b61bcccc7f790cbbf8ae79be8fa5799ae9ba1cc41a52ab78bcc42
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 34527853
PQID 2573434387
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2573434387
pubmed_primary_34527853
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of ACM on interactive, mobile, wearable and ubiquitous technologies
PublicationTitleAlternate Proc ACM Interact Mob Wearable Ubiquitous Technol
PublicationYear 2020
SSID ssj0001933807
Score 2.5252182
Snippet With the recent proliferation of mobile health technologies, health scientists are increasingly interested in developing just-in-time adaptive interventions...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
Title Personalized HeartSteps: A Reinforcement Learning Algorithm for Optimizing Physical Activity
URI https://www.ncbi.nlm.nih.gov/pubmed/34527853
https://www.proquest.com/docview/2573434387
Volume 4
WOSCitedRecordID wos000908394100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMsDA-1FeMhJrVOdpmwVFiKoLJUIgdUCq7ItTKtG0kMDQX885SVUWJCQyeHGsROfL5bvz3XeEXIVMC6bCyIm0QQfFSLSDyg8dASySwCSkvG42wft9MRjIpAm4FU1a5cImVoY6nYKNkXdQtXxbBSn4zezdsV2j7Olq00JjlbR8hDI2pYsPxDLGgt56XTHtBTxw0BXgdd0sOgFhx7fkVoz_Di2rX0x3-78vt0O2GnBJ41obdsmKyffI5g_KwX3ykizQ99yktId6XtpEr-KaxvTRVDSqUEUMacO8OqLx2wifVb5OKE7SB7Qxk_HcTiTNHtMY6h4UB-S5e_d023OaDgsO-FyWThpJP9AQaTCujlwNePGMSwZaZ0IZLrURmQq5tBzeWrkAgatCT2ku8ObAOyRr-TQ3x4SmbqZYCloZrQMJSoDHtFRKCBdSn-k2uVyIbogabI8lVG6mn8VwKbw2OarlP5zVVBtDPwg9joji5A-rT8mGZ53hKkHsjLQy_H7NOVmHr3JcfFxUqoFjP7n_BvdZx04
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+HeartSteps%3A+A+Reinforcement+Learning+Algorithm+for+Optimizing+Physical+Activity&rft.jtitle=Proceedings+of+ACM+on+interactive%2C+mobile%2C+wearable+and+ubiquitous+technologies&rft.au=Liao%2C+Peng&rft.au=Greenewald%2C+Kristjan&rft.au=Klasnja%2C+Predrag&rft.au=Murphy%2C+Susan&rft.date=2020-03-01&rft.eissn=2474-9567&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1145%2F3381007&rft_id=info%3Apmid%2F34527853&rft_id=info%3Apmid%2F34527853&rft.externalDocID=34527853
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2474-9567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2474-9567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2474-9567&client=summon