Input fault detection and estimation using PI observer based on the ARX-Laguerre model

This work is dedicated to the synthesis of a new fault detection and identification scheme for the actuator and/or sensor faults modeled as unknown inputs of the system. The novelty of this scheme consists in the synthesis of a new structure of proportional-integral observer (PIO) reformulated from...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 90; no. 5-8; pp. 1317 - 1336
Main Authors: Najeh, Tawfik, Ben Njima, Chakib, Garna, Tarek, Ragot, José
Format: Journal Article
Language:English
Published: London Springer London 01.05.2017
Springer Nature B.V
Springer Verlag
Subjects:
ISSN:0268-3768, 1433-3015
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work is dedicated to the synthesis of a new fault detection and identification scheme for the actuator and/or sensor faults modeled as unknown inputs of the system. The novelty of this scheme consists in the synthesis of a new structure of proportional-integral observer (PIO) reformulated from the new linear ARX-Laguerre representation with filters on system input and output in order to estimate the unknown inputs presented as faults. The designed observer exploits the input/output measurements to reconstruct the Laguerre filter outputs where the stability and the convergence properties are ensured by using Linear Matrix Inequality. However, a significant reduction of this model is subject to an optimal choice of both Laguerre poles which is achieved by a new proposed identification approach based on a genetic algorithm. The performances of the proposed identification approach and the resulting PIO are tested on numerical simulation and validated on a 2 n d order electrical linear system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-016-9414-6