Lattice polyhedra and submodular flows

Lattice polyhedra, as introduced by Gröflin and Hoffman, form a common framework for various discrete optimization problems. They are specified by a lattice structure on the underlying matrix satisfying certain sub- and supermodularity constraints. Lattice polyhedra provide one of the most general f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Japan journal of industrial and applied mathematics Ročník 29; číslo 3; s. 441 - 451
Hlavní autori: Fujishige, Satoru, Peis, Britta
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Japan Springer Japan 01.10.2012
Springer Nature B.V
Predmet:
ISSN:0916-7005, 1868-937X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Lattice polyhedra, as introduced by Gröflin and Hoffman, form a common framework for various discrete optimization problems. They are specified by a lattice structure on the underlying matrix satisfying certain sub- and supermodularity constraints. Lattice polyhedra provide one of the most general frameworks of total dual integral systems. So far no combinatorial algorithm has been found for the corresponding linear optimization problem. We show that the important class of lattice polyhedra in which the underlying lattice is of modular characteristic can be reduced to the Edmonds–Giles polyhedra. Thus, submodular flow algorithms can be applied to this class of lattice polyhedra. In contrast to a previous result of Schrijver, we do not explicitly require that the lattice is distributive. Moreover, our reduction is very simple in that it only uses an arbitrary maximal chain in the lattice.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0916-7005
1868-937X
DOI:10.1007/s13160-012-0084-y