Lattice polyhedra and submodular flows

Lattice polyhedra, as introduced by Gröflin and Hoffman, form a common framework for various discrete optimization problems. They are specified by a lattice structure on the underlying matrix satisfying certain sub- and supermodularity constraints. Lattice polyhedra provide one of the most general f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japan journal of industrial and applied mathematics Jg. 29; H. 3; S. 441 - 451
Hauptverfasser: Fujishige, Satoru, Peis, Britta
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Japan Springer Japan 01.10.2012
Springer Nature B.V
Schlagworte:
ISSN:0916-7005, 1868-937X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lattice polyhedra, as introduced by Gröflin and Hoffman, form a common framework for various discrete optimization problems. They are specified by a lattice structure on the underlying matrix satisfying certain sub- and supermodularity constraints. Lattice polyhedra provide one of the most general frameworks of total dual integral systems. So far no combinatorial algorithm has been found for the corresponding linear optimization problem. We show that the important class of lattice polyhedra in which the underlying lattice is of modular characteristic can be reduced to the Edmonds–Giles polyhedra. Thus, submodular flow algorithms can be applied to this class of lattice polyhedra. In contrast to a previous result of Schrijver, we do not explicitly require that the lattice is distributive. Moreover, our reduction is very simple in that it only uses an arbitrary maximal chain in the lattice.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0916-7005
1868-937X
DOI:10.1007/s13160-012-0084-y