A particle-element contact algorithm incorporated into the coupling methods of FEM-ISPH and FEM-WCSPH for FSI problems

Numerical simulation of FSI problems is one of the most important topics in computational fluid dynamics. In this paper, a particle-element contact algorithm is incorporated into coupling methods of FEM-ISPH and FEM-WCSPH for solving FSI problems. The objective of contact algorithm is to adjust posi...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering Vol. 123; pp. 154 - 163
Main Authors: Long, Ting, Hu, Dean, Yang, Gang, Wan, Detao
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2016
Subjects:
ISSN:0029-8018, 1873-5258
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Numerical simulation of FSI problems is one of the most important topics in computational fluid dynamics. In this paper, a particle-element contact algorithm is incorporated into coupling methods of FEM-ISPH and FEM-WCSPH for solving FSI problems. The objective of contact algorithm is to adjust positions and normal velocities of slave particles and master nodes by conservation of linear momentum and angular momentum. Compared with particle–particle contact algorithm, which is based on contact force of Monaghan boundary condition, the calculation of contact force is not required in the present contact algorithm. Moreover, correction algorithms of Yildiz et al. are used for both WCSPH and ISPH to treat noises in fluid field and improve the accuracy of numerical simulations. Numerical examples investigate the comparison of particle-element contact algorithm and commonly used particle–particle contact algorithm, and it indicates that the present contact algorithm is effective for FSI problems. •A particle-element contact algorithm is simplified and incorporated into coupling methods of FEM-ISPH and FEM-WCSPH.•The calculation of contact force is not required in the present contact algorithm.•Comparison of the present contact algorithm and commonly used particle–particle contact algorithm is investigated.•Numerical examples indicate that the present contact algorithm is effective and accurate for FSI problems.
AbstractList Numerical simulation of FSI problems is one of the most important topics in computational fluid dynamics. In this paper, a particle-element contact algorithm is incorporated into coupling methods of FEM-ISPH and FEM-WCSPH for solving FSI problems. The objective of contact algorithm is to adjust positions and normal velocities of slave particles and master nodes by conservation of linear momentum and angular momentum. Compared with particle-particle contact algorithm, which is based on contact force of Monaghan boundary condition, the calculation of contact force is not required in the present contact algorithm. Moreover, correction algorithms of Yildiz et al. are used for both WCSPH and ISPH to treat noises in fluid field and improve the accuracy of numerical simulations. Numerical examples investigate the comparison of particle-element contact algorithm and commonly used particle-particle contact algorithm, and it indicates that the present contact algorithm is effective for FSI problems.
Numerical simulation of FSI problems is one of the most important topics in computational fluid dynamics. In this paper, a particle-element contact algorithm is incorporated into coupling methods of FEM-ISPH and FEM-WCSPH for solving FSI problems. The objective of contact algorithm is to adjust positions and normal velocities of slave particles and master nodes by conservation of linear momentum and angular momentum. Compared with particle–particle contact algorithm, which is based on contact force of Monaghan boundary condition, the calculation of contact force is not required in the present contact algorithm. Moreover, correction algorithms of Yildiz et al. are used for both WCSPH and ISPH to treat noises in fluid field and improve the accuracy of numerical simulations. Numerical examples investigate the comparison of particle-element contact algorithm and commonly used particle–particle contact algorithm, and it indicates that the present contact algorithm is effective for FSI problems. •A particle-element contact algorithm is simplified and incorporated into coupling methods of FEM-ISPH and FEM-WCSPH.•The calculation of contact force is not required in the present contact algorithm.•Comparison of the present contact algorithm and commonly used particle–particle contact algorithm is investigated.•Numerical examples indicate that the present contact algorithm is effective and accurate for FSI problems.
Author Hu, Dean
Long, Ting
Yang, Gang
Wan, Detao
Author_xml – sequence: 1
  givenname: Ting
  surname: Long
  fullname: Long, Ting
– sequence: 2
  givenname: Dean
  surname: Hu
  fullname: Hu, Dean
  email: hudean@hnu.edu.cn
– sequence: 3
  givenname: Gang
  surname: Yang
  fullname: Yang, Gang
– sequence: 4
  givenname: Detao
  surname: Wan
  fullname: Wan, Detao
BookMark eNqNUVtLwzAYDaLgvPwFyaMvnUnTpin4oAyng4mCio8hpl-3jDapSSb4782cvvgy4YNw4FzIOUdo3zoLCJ1RMqaE8ovV2GlQFuxinCc8JukKsodGVFQsK_NS7KMRIXmdCULFIToKYUUI4ZywEfq4xoPy0egOMuigBxuxdjYqHbHqFs6buOyxsdr5wXkVoUkgOhyXkHjroTN2gXuIS9cE7Fo8vbnPZk-Pd1jZ5hu8TjaodR5Pn2Z48O4tpYQTdNCqLsDpz3uMXqY3z5O7bP5wO5tczzPNKhGzqq5Yy4GVmrGmqIWAlpaVqpuW11BzVemC5ix9phFlwRhlWghNmMgTG_K2YsfofOubgt_XEKLsTdDQdakvtw6SClbyZMDqf1BTNBG8EInKt1TtXQgeWjl40yv_KSmRm03kSv5uIjebSJKuIEl4-UeoTVTRpMK9Mt1u-dVWDqmyDwNeBm3AamiMBx1l48wuiy9pRq0O
CitedBy_id crossref_primary_10_1063_5_0221300
crossref_primary_10_1016_j_ijthermalsci_2025_110022
crossref_primary_10_1016_j_oceaneng_2023_115527
crossref_primary_10_1007_s00466_018_1654_x
crossref_primary_10_1016_j_oceaneng_2024_117564
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126491
crossref_primary_10_1007_s42241_020_0021_5
crossref_primary_10_1016_j_matcom_2020_01_019
crossref_primary_10_1016_j_oceaneng_2021_109449
crossref_primary_10_1108_EC_01_2018_0041
crossref_primary_10_1002_nag_70017
crossref_primary_10_1016_j_enganabound_2019_02_010
crossref_primary_10_1002_fld_5083
crossref_primary_10_1007_s40571_022_00498_2
crossref_primary_10_1016_j_enganabound_2017_02_016
crossref_primary_10_1016_j_cma_2024_117255
crossref_primary_10_1016_j_apor_2021_102822
crossref_primary_10_1002_fld_4412
crossref_primary_10_1631_jzus_A1800520
crossref_primary_10_1016_j_jfluidstructs_2023_103855
crossref_primary_10_1016_j_oceaneng_2020_108108
crossref_primary_10_1007_s40571_020_00354_1
crossref_primary_10_1016_S1001_6058_16_60730_8
crossref_primary_10_1016_j_apm_2019_06_020
crossref_primary_10_1002_fld_5094
crossref_primary_10_1016_j_oceaneng_2018_03_031
Cites_doi 10.1016/j.compstruc.2007.01.002
10.1016/j.jcp.2009.05.032
10.1016/0021-9991(83)90036-0
10.1146/annurev.bioeng.10.061807.160521
10.1016/j.engstruct.2010.10.020
10.1080/00221686.2010.9641245
10.1016/j.ijimpeng.2004.04.017
10.1016/j.oceaneng.2012.06.031
10.1016/j.cma.2007.06.004
10.1016/j.cma.2009.04.001
10.1088/1757-899X/10/1/012041
10.1080/00221686.2010.9641246
10.1016/0021-9991(74)90051-5
10.2514/6.1998-2421
10.1016/S0045-7825(00)00331-5
10.1002/fld.3824
10.1002/cnm.1371
10.1016/j.jcp.2012.04.037
10.1016/0045-7825(82)90128-1
10.1086/112164
10.1006/jcph.1994.1034
10.1002/nme.3267
10.1080/00221686.2010.9641251
10.1016/j.compfluid.2012.02.009
10.1006/jcph.1997.5776
10.1016/j.jcp.2008.06.005
10.1002/fld.2559
10.1093/mnras/181.3.375
10.1006/jcph.1999.6246
10.1016/j.ijmecsci.2013.11.021
10.1016/0029-5493(94)90136-8
10.1016/j.jcp.2007.07.013
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7ST
7TN
C1K
F1W
H96
L.G
SOI
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.oceaneng.2016.06.040
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Environment Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
EndPage 163
ExternalDocumentID 10_1016_j_oceaneng_2016_06_040
S002980181630230X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
WUQ
~HD
7ST
7TN
C1K
F1W
H96
L.G
SOI
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c378t-7973f6e35c33d4988ef157a9df69e96a7c4123000d8543313c88c03823d4e2f73
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000382338600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Thu Oct 02 06:44:10 EDT 2025
Tue Oct 07 09:41:06 EDT 2025
Tue Nov 18 21:53:11 EST 2025
Sat Nov 29 05:33:11 EST 2025
Fri Feb 23 02:26:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords FSI problems
Contact algorithm
Linear momentum
Coupling method
Angular momentum
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-7973f6e35c33d4988ef157a9df69e96a7c4123000d8543313c88c03823d4e2f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1815708648
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_1835630039
proquest_miscellaneous_1815708648
crossref_primary_10_1016_j_oceaneng_2016_06_040
crossref_citationtrail_10_1016_j_oceaneng_2016_06_040
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2016_06_040
PublicationCentury 2000
PublicationDate 2016-09-01
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Ocean engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hughes, Graham (bib13) 2010; 48
Lee, Moulinec, Xu, Violeau, Laurence, Stansby (bib19) 2008; 227
Shadloo, Zainali, Yildiz, Suleman (bib31) 2012; 89
Yang, Jones, Mccue (bib36) 2012; 55
Fourey, G., Oger, G. Touzé, D. Alessandrini, B., 2010. Violent fluid–structure interaction simulations using a coupled SPH/FEM method. In: Proceedings of the IOP Conference Series: Materials Science and Engineering, IOP Publishing, p. 012041.
Lucy (bib20) 1977; 82
Vacondio, Rogers, Stansby (bib33) 2012; 69
Messahel, Souli (bib21) 2013; 96
Rafiee, Thiagarajan (bib30) 2009; 198
Morris, Fox, Zhu (bib26) 1997; 136
van Loon, van de Vosse (bib7) 2010; 26
Koshizuka, S., Oka, Y.,Tamako, H., 1995. A particle method for calculating splashing of incompressible viscous fluid. In: Proceedings of the International Conference on Mathematics and Computations, Reactor Physics, and Environmental Analyses, Portland, OR (United States), 30 Apr to 4 May 1995.
Hu, Adams (bib12) 2007; 227
Donea, Giuliani, Halleux (bib6) 1982; 33
Antoci, Gallati, Sibilla (bib1) 2007; 85
Chen, Zong, Liu, Li (bib4) 2013; 73
Groenenboom, Cartwright (bib10) 2009; 48
Vuyst, Vignjevic, Campbell (bib34) 2005; 31
Gingold, Monaghan (bib9) 1977; 181
Johnson, G.R., Stryk, R.A., Holmquist, T.J., Beissel, S.R., 1997. Numerical Algorithms in a Lagrangian Hydrocode.
Bennet, R., Edwards, J., 1998. An overview of recent developments in computational aeroelasticity. In: Proceedings of the 29th AIAA Fluid Dynamics Conference, Albuquerque, NM.
Monaghan (bib22) 1994; 110
Attaway, Heinstein, Swegle (bib2) 1994; 150
Cummins, Rudman (bib5) 1999; 152
Oxtoby, Malan (bib27) 2012; 231
Hirt, Amsden, Cook (bib11) 1974; 14
Lee, Violeau, Ploix (bib18) 2010; 48
Xu, Stansby, Laurence (bib35) 2009; 228
Pozorski, Wawreńczuk (bib29) 2002
Zhang, Qiang, Gao (bib37) 2011; 33
Monaghan, Gingold (bib23) 1983; 52
Ozbulut, Yildiz, Goren (bib28) 2013; 79
Taylor, Figueroa (bib32) 2009; 11
Johnson, Stryk (bib15) 2001; 190
Morinishi, Fukui (bib25) 2012; 65
Idelsohn, Marti, Limache, Oñate (bib14) 2008; 197
Monaghan, Lattanzio (bib24) 1985; 149
Taylor (10.1016/j.oceaneng.2016.06.040_bib32) 2009; 11
Oxtoby (10.1016/j.oceaneng.2016.06.040_bib27) 2012; 231
Gingold (10.1016/j.oceaneng.2016.06.040_bib9) 1977; 181
Monaghan (10.1016/j.oceaneng.2016.06.040_bib24) 1985; 149
Yang (10.1016/j.oceaneng.2016.06.040_bib36) 2012; 55
Cummins (10.1016/j.oceaneng.2016.06.040_bib5) 1999; 152
van Loon (10.1016/j.oceaneng.2016.06.040_bib7) 2010; 26
Hughes (10.1016/j.oceaneng.2016.06.040_bib13) 2010; 48
Idelsohn (10.1016/j.oceaneng.2016.06.040_bib14) 2008; 197
Monaghan (10.1016/j.oceaneng.2016.06.040_bib22) 1994; 110
Antoci (10.1016/j.oceaneng.2016.06.040_bib1) 2007; 85
Zhang (10.1016/j.oceaneng.2016.06.040_bib37) 2011; 33
Lucy (10.1016/j.oceaneng.2016.06.040_bib20) 1977; 82
Vacondio (10.1016/j.oceaneng.2016.06.040_bib33) 2012; 69
Lee (10.1016/j.oceaneng.2016.06.040_bib18) 2010; 48
Monaghan (10.1016/j.oceaneng.2016.06.040_bib23) 1983; 52
Ozbulut (10.1016/j.oceaneng.2016.06.040_bib28) 2013; 79
Pozorski (10.1016/j.oceaneng.2016.06.040_bib29) 2002
Morinishi (10.1016/j.oceaneng.2016.06.040_bib25) 2012; 65
Johnson (10.1016/j.oceaneng.2016.06.040_bib15) 2001; 190
Chen (10.1016/j.oceaneng.2016.06.040_bib4) 2013; 73
10.1016/j.oceaneng.2016.06.040_bib16
Hu (10.1016/j.oceaneng.2016.06.040_bib12) 2007; 227
10.1016/j.oceaneng.2016.06.040_bib17
Shadloo (10.1016/j.oceaneng.2016.06.040_bib31) 2012; 89
Vuyst (10.1016/j.oceaneng.2016.06.040_bib34) 2005; 31
Attaway (10.1016/j.oceaneng.2016.06.040_bib2) 1994; 150
Xu (10.1016/j.oceaneng.2016.06.040_bib35) 2009; 228
Groenenboom (10.1016/j.oceaneng.2016.06.040_bib10) 2009; 48
Donea (10.1016/j.oceaneng.2016.06.040_bib6) 1982; 33
Hirt (10.1016/j.oceaneng.2016.06.040_bib11) 1974; 14
Messahel (10.1016/j.oceaneng.2016.06.040_bib21) 2013; 96
10.1016/j.oceaneng.2016.06.040_bib3
Morris (10.1016/j.oceaneng.2016.06.040_bib26) 1997; 136
Lee (10.1016/j.oceaneng.2016.06.040_bib19) 2008; 227
10.1016/j.oceaneng.2016.06.040_bib8
Rafiee (10.1016/j.oceaneng.2016.06.040_bib30) 2009; 198
References_xml – volume: 26
  start-page: 273
  year: 2010
  end-page: 275
  ident: bib7
  article-title: Special issue: fluid–structure interaction in biomedical applications
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 110
  start-page: 399
  year: 1994
  end-page: 406
  ident: bib22
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
– volume: 198
  start-page: 2785
  year: 2009
  end-page: 2795
  ident: bib30
  article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 89
  start-page: 939
  year: 2012
  end-page: 956
  ident: bib31
  article-title: A robust weakly compressible SPH method and its comparison with an incompressible SPH
  publication-title: Int. J. Numer. Methods Eng.
– reference: Johnson, G.R., Stryk, R.A., Holmquist, T.J., Beissel, S.R., 1997. Numerical Algorithms in a Lagrangian Hydrocode.
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: bib9
  article-title: Smoothed particle hydrodynamics – theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 150
  start-page: 199
  year: 1994
  end-page: 205
  ident: bib2
  article-title: Coupling of smooth particle hydrodynamics with the finite element method
  publication-title: Nucl. Eng. Des.
– volume: 85
  start-page: 879
  year: 2007
  end-page: 890
  ident: bib1
  article-title: Numerical simulation of fluid–structure interaction by SPH
  publication-title: Comput. Struct.
– volume: 31
  start-page: 1054
  year: 2005
  end-page: 1064
  ident: bib34
  article-title: Coupling between meshless and finite element methods
  publication-title: Int. J. Impact Eng.
– volume: 14
  start-page: 227
  year: 1974
  end-page: 253
  ident: bib11
  article-title: An arbitrary Lagrangian-Eulerian computing method for all flow speeds
  publication-title: J. Comput. Phys.
– volume: 149
  start-page: 135
  year: 1985
  end-page: 143
  ident: bib24
  article-title: A refined particle method for astrophysical problems
  publication-title: Astron. Astrophys.
– volume: 228
  start-page: 6703
  year: 2009
  end-page: 6725
  ident: bib35
  article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach
  publication-title: J. Comput. Phys.
– volume: 55
  start-page: 136
  year: 2012
  end-page: 147
  ident: bib36
  article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model
  publication-title: Ocean Eng.
– volume: 227
  start-page: 264
  year: 2007
  end-page: 278
  ident: bib12
  article-title: An incompressible multi-phase SPH method
  publication-title: J. Comput. Phys.
– volume: 190
  start-page: 4531
  year: 2001
  end-page: 4549
  ident: bib15
  article-title: Symmetric contact and sliding interface algorithms for intense impulsive loading computations
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 231
  start-page: 5389
  year: 2012
  end-page: 5405
  ident: bib27
  article-title: A matrix-free, implicit, incompressible fractional-step algorithm for fluid–structure interaction applications
  publication-title: J. Comput. Phys.
– year: 2002
  ident: bib29
  article-title: SPH computation of incompressible viscous flows
  publication-title: J. Theor. Appl. Mech.
– volume: 33
  start-page: 255
  year: 2011
  end-page: 264
  ident: bib37
  article-title: Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation
  publication-title: Eng. Struct.
– volume: 136
  start-page: 214
  year: 1997
  end-page: 226
  ident: bib26
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
– volume: 65
  start-page: 92
  year: 2012
  end-page: 98
  ident: bib25
  article-title: An Eulerian approach for fluid–structure interaction problems
  publication-title: Comput. Fluids
– volume: 48
  start-page: 61
  year: 2009
  end-page: 73
  ident: bib10
  article-title: Hydrodynamics and fluid–structure interaction by coupled SPH-FE method
  publication-title: J. Hydraul. Res.
– volume: 69
  start-page: 226
  year: 2012
  end-page: 253
  ident: bib33
  article-title: Smoothed Particle Hydrodynamics: Approximate zero-consistent 2-D boundary conditions and still shallow-water tests
  publication-title: Int. J. Numer. Methods Fluids
– volume: 11
  start-page: 109
  year: 2009
  end-page: 134
  ident: bib32
  article-title: Patient-specific modeling of cardiovascular mechanics
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 48
  start-page: 50
  year: 2010
  end-page: 60
  ident: bib18
  article-title: Stéphane, application of weakly compressible and truly incompressible SPH to 3
  publication-title: J. Hydraul. Res.
– reference: Bennet, R., Edwards, J., 1998. An overview of recent developments in computational aeroelasticity. In: Proceedings of the 29th AIAA Fluid Dynamics Conference, Albuquerque, NM.
– volume: 227
  start-page: 8417
  year: 2008
  end-page: 8436
  ident: bib19
  article-title: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method
  publication-title: J. Comput. Phys.
– volume: 52
  start-page: 374
  year: 1983
  end-page: 389
  ident: bib23
  article-title: Shock simulation by the particle method SPH
  publication-title: J. Comput. Phys.
– reference: Fourey, G., Oger, G. Touzé, D. Alessandrini, B., 2010. Violent fluid–structure interaction simulations using a coupled SPH/FEM method. In: Proceedings of the IOP Conference Series: Materials Science and Engineering, IOP Publishing, p. 012041.
– volume: 33
  start-page: 689
  year: 1982
  end-page: 723
  ident: bib6
  article-title: An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 152
  start-page: 584
  year: 1999
  end-page: 607
  ident: bib5
  article-title: An SPH projection method
  publication-title: J. Comput. Phys.
– volume: 79
  start-page: 56
  year: 2013
  end-page: 65
  ident: bib28
  article-title: A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows
  publication-title: Int. J. Mech. Sci.
– volume: 48
  start-page: 105
  year: 2010
  end-page: 117
  ident: bib13
  article-title: Comparison of incompressible and weakly-compressible SPH models for free-surface water flows
  publication-title: J. Hydraul. Res.
– reference: Koshizuka, S., Oka, Y.,Tamako, H., 1995. A particle method for calculating splashing of incompressible viscous fluid. In: Proceedings of the International Conference on Mathematics and Computations, Reactor Physics, and Environmental Analyses, Portland, OR (United States), 30 Apr to 4 May 1995.
– volume: 96
  start-page: 435
  year: 2013
  end-page: 455
  ident: bib21
  article-title: SPH and ALE formulations for fluid structure coupling
  publication-title: Cmes Comput. Model. Eng. Ences
– volume: 73
  start-page: 813
  year: 2013
  end-page: 829
  ident: bib4
  article-title: A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows
  publication-title: Int. J. Numer. Methods Fluids
– volume: 197
  start-page: 1762
  year: 2008
  end-page: 1776
  ident: bib14
  article-title: Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 82
  start-page: 1013
  year: 1977
  end-page: 1024
  ident: bib20
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
– volume: 85
  start-page: 879
  year: 2007
  ident: 10.1016/j.oceaneng.2016.06.040_bib1
  article-title: Numerical simulation of fluid–structure interaction by SPH
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.01.002
– volume: 228
  start-page: 6703
  year: 2009
  ident: 10.1016/j.oceaneng.2016.06.040_bib35
  article-title: Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.05.032
– volume: 52
  start-page: 374
  year: 1983
  ident: 10.1016/j.oceaneng.2016.06.040_bib23
  article-title: Shock simulation by the particle method SPH
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(83)90036-0
– ident: 10.1016/j.oceaneng.2016.06.040_bib17
– volume: 11
  start-page: 109
  year: 2009
  ident: 10.1016/j.oceaneng.2016.06.040_bib32
  article-title: Patient-specific modeling of cardiovascular mechanics
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.10.061807.160521
– volume: 33
  start-page: 255
  year: 2011
  ident: 10.1016/j.oceaneng.2016.06.040_bib37
  article-title: Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.10.020
– volume: 48
  start-page: 50
  year: 2010
  ident: 10.1016/j.oceaneng.2016.06.040_bib18
  article-title: Stéphane, application of weakly compressible and truly incompressible SPH to 3
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2010.9641245
– volume: 31
  start-page: 1054
  year: 2005
  ident: 10.1016/j.oceaneng.2016.06.040_bib34
  article-title: Coupling between meshless and finite element methods
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2004.04.017
– year: 2002
  ident: 10.1016/j.oceaneng.2016.06.040_bib29
  article-title: SPH computation of incompressible viscous flows
  publication-title: J. Theor. Appl. Mech.
– volume: 55
  start-page: 136
  year: 2012
  ident: 10.1016/j.oceaneng.2016.06.040_bib36
  article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.06.031
– volume: 149
  start-page: 135
  year: 1985
  ident: 10.1016/j.oceaneng.2016.06.040_bib24
  article-title: A refined particle method for astrophysical problems
  publication-title: Astron. Astrophys.
– volume: 197
  start-page: 1762
  year: 2008
  ident: 10.1016/j.oceaneng.2016.06.040_bib14
  article-title: Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.06.004
– volume: 198
  start-page: 2785
  year: 2009
  ident: 10.1016/j.oceaneng.2016.06.040_bib30
  article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2009.04.001
– volume: 96
  start-page: 435
  year: 2013
  ident: 10.1016/j.oceaneng.2016.06.040_bib21
  article-title: SPH and ALE formulations for fluid structure coupling
  publication-title: Cmes Comput. Model. Eng. Ences
– ident: 10.1016/j.oceaneng.2016.06.040_bib8
  doi: 10.1088/1757-899X/10/1/012041
– volume: 48
  start-page: 61
  year: 2009
  ident: 10.1016/j.oceaneng.2016.06.040_bib10
  article-title: Hydrodynamics and fluid–structure interaction by coupled SPH-FE method
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2010.9641246
– volume: 14
  start-page: 227
  year: 1974
  ident: 10.1016/j.oceaneng.2016.06.040_bib11
  article-title: An arbitrary Lagrangian-Eulerian computing method for all flow speeds
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(74)90051-5
– ident: 10.1016/j.oceaneng.2016.06.040_bib3
  doi: 10.2514/6.1998-2421
– volume: 190
  start-page: 4531
  year: 2001
  ident: 10.1016/j.oceaneng.2016.06.040_bib15
  article-title: Symmetric contact and sliding interface algorithms for intense impulsive loading computations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(00)00331-5
– ident: 10.1016/j.oceaneng.2016.06.040_bib16
– volume: 73
  start-page: 813
  year: 2013
  ident: 10.1016/j.oceaneng.2016.06.040_bib4
  article-title: A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3824
– volume: 26
  start-page: 273
  year: 2010
  ident: 10.1016/j.oceaneng.2016.06.040_bib7
  article-title: Special issue: fluid–structure interaction in biomedical applications
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.1371
– volume: 231
  start-page: 5389
  year: 2012
  ident: 10.1016/j.oceaneng.2016.06.040_bib27
  article-title: A matrix-free, implicit, incompressible fractional-step algorithm for fluid–structure interaction applications
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.04.037
– volume: 33
  start-page: 689
  year: 1982
  ident: 10.1016/j.oceaneng.2016.06.040_bib6
  article-title: An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(82)90128-1
– volume: 82
  start-page: 1013
  year: 1977
  ident: 10.1016/j.oceaneng.2016.06.040_bib20
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
  doi: 10.1086/112164
– volume: 110
  start-page: 399
  year: 1994
  ident: 10.1016/j.oceaneng.2016.06.040_bib22
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1034
– volume: 89
  start-page: 939
  year: 2012
  ident: 10.1016/j.oceaneng.2016.06.040_bib31
  article-title: A robust weakly compressible SPH method and its comparison with an incompressible SPH
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.3267
– volume: 48
  start-page: 105
  year: 2010
  ident: 10.1016/j.oceaneng.2016.06.040_bib13
  article-title: Comparison of incompressible and weakly-compressible SPH models for free-surface water flows
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2010.9641251
– volume: 65
  start-page: 92
  year: 2012
  ident: 10.1016/j.oceaneng.2016.06.040_bib25
  article-title: An Eulerian approach for fluid–structure interaction problems
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2012.02.009
– volume: 136
  start-page: 214
  year: 1997
  ident: 10.1016/j.oceaneng.2016.06.040_bib26
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5776
– volume: 227
  start-page: 8417
  year: 2008
  ident: 10.1016/j.oceaneng.2016.06.040_bib19
  article-title: Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.06.005
– volume: 69
  start-page: 226
  year: 2012
  ident: 10.1016/j.oceaneng.2016.06.040_bib33
  article-title: Smoothed Particle Hydrodynamics: Approximate zero-consistent 2-D boundary conditions and still shallow-water tests
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2559
– volume: 181
  start-page: 375
  year: 1977
  ident: 10.1016/j.oceaneng.2016.06.040_bib9
  article-title: Smoothed particle hydrodynamics – theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/181.3.375
– volume: 152
  start-page: 584
  year: 1999
  ident: 10.1016/j.oceaneng.2016.06.040_bib5
  article-title: An SPH projection method
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6246
– volume: 79
  start-page: 56
  year: 2013
  ident: 10.1016/j.oceaneng.2016.06.040_bib28
  article-title: A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2013.11.021
– volume: 150
  start-page: 199
  year: 1994
  ident: 10.1016/j.oceaneng.2016.06.040_bib2
  article-title: Coupling of smooth particle hydrodynamics with the finite element method
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(94)90136-8
– volume: 227
  start-page: 264
  year: 2007
  ident: 10.1016/j.oceaneng.2016.06.040_bib12
  article-title: An incompressible multi-phase SPH method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.07.013
SSID ssj0006603
Score 2.2980704
Snippet Numerical simulation of FSI problems is one of the most important topics in computational fluid dynamics. In this paper, a particle-element contact algorithm...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 154
SubjectTerms Algorithms
Angular momentum
Brackish
Computational fluid dynamics
Computer simulation
Contact
Contact algorithm
Contact force
Coupling
Coupling method
FSI problems
Linear momentum
Marine
Mathematical models
Title A particle-element contact algorithm incorporated into the coupling methods of FEM-ISPH and FEM-WCSPH for FSI problems
URI https://dx.doi.org/10.1016/j.oceaneng.2016.06.040
https://www.proquest.com/docview/1815708648
https://www.proquest.com/docview/1835630039
Volume 123
WOSCitedRecordID wos000382338600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006603
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVKlwMgIVhALF8yErcqkNSJYx-rVUuLYFmphS2nKHUc2FVpqjat9o_wf5mJ7TQqHwtCXKLGstsm8zIzsd88E_Ji5kczEXHpRRDfPHgStTdTM-kFOpxpSE8yUYnpfHwbn5yI6VSetlrfXC3Mdh4vFuLyUi7_q6mhDYyNpbN_Ye76S6EBPoPR4Qhmh-MfGb7XWdpWTxtueMVHx1rIdP65WJ2XX752UJPBSBhrFF-yCagqNsuqPN3sK12xPAb9d95ofDqsVhnw5OwYz5CdOBiPOnZDmnUzyX2vcHpf75QOa9aP5f9OGm3DjXF7O5R-slPYr9Ndr7PUescyLZoTFQGvmVh29sxV0OzoSqaaQGKUND5YGycsYgYvyEbSvfbSXdbws4FRnrYhOzA-8odoYCYmLl4WeNlw1cjk45Vcq5GI2lPaHld69KhgxnErJX96jRx040iKNjnojfrTN3WI59xnjjuEAxql5z__tV9lPXvxv0pqJnfIbfs2QnsGL3dJSy8Oyc2GRuUhuVVZ0wqb3yPbHt2HF7XwojW8aBNeFOFFAV7UwYtaeNEipw5eFOBFa3hRgBcFeFEHr_vkw6A_OR56du8OT7FYlF4sY5ZzzSLFWBZKIXQeRHEqs5xLLXkaqxAsCrcyExEW7TElhPJxUToLdTeP2QPSXhQL_ZBQyJh0KoWSeSBCnCHQDPNYwTWKDbLsiETu3ibKCtvj_irzxDEYLxJnkwRtkiCVM_SPyKt63NJIu1w5QjrTJTZBNYlnAoi7cuxzZ-sEPDguy0GfYrNOAG9R7Aseit_1YSjk5zP56B_-w2NyY_dgPiHtcrXRT8l1tS3P16tnFuTfATVezTw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+particle-element+contact+algorithm+incorporated+into+the+coupling+methods+of+FEM-ISPH+and+FEM-WCSPH+for+FSI+problems&rft.jtitle=Ocean+engineering&rft.au=Long%2C+Ting&rft.au=Hu%2C+Dean&rft.au=Yang%2C+Gang&rft.au=Wan%2C+Detao&rft.date=2016-09-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=123&rft.spage=154&rft.epage=163&rft_id=info:doi/10.1016%2Fj.oceaneng.2016.06.040&rft.externalDocID=S002980181630230X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon