An improved column generation algorithm for minimum sum-of-squares clustering

Given a set of entities associated with points in Euclidean space, minimum sum-of-squares clustering (MSSC) consists in partitioning this set into clusters such that the sum of squared distances from each point to the centroid of its cluster is minimized. A column generation algorithm for MSSC was g...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 131; no. 1-2; pp. 195 - 220
Main Authors: Aloise, Daniel, Hansen, Pierre, Liberti, Leo
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01.02.2012
Springer
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given a set of entities associated with points in Euclidean space, minimum sum-of-squares clustering (MSSC) consists in partitioning this set into clusters such that the sum of squared distances from each point to the centroid of its cluster is minimized. A column generation algorithm for MSSC was given by du Merle et al. in SIAM Journal Scientific Computing 21:1485–1505. The bottleneck of that algorithm is the resolution of the auxiliary problem of finding a column with negative reduced cost. We propose a new way to solve this auxiliary problem based on geometric arguments. This greatly improves the efficiency of the whole algorithm and leads to exact solution of instances with over 2,300 entities, i.e., more than 10 times as much as previously done.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-010-0349-7