On the first eigenvalue and eigenfunction of the Laplacian with mixed boundary conditions

We consider the eigenvalue problem for the Laplacian with mixed Dirichlet and Neumann boundary conditions. For a certain class of bounded, simply connected planar domains we prove monotonicity properties of the first eigenfunction. As a consequence, we establish a variant of the hot spots conjecture...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Differential Equations Ročník 427; s. 689 - 718
Hlavní autoři: Aldeghi, Nausica, Rohleder, Jonathan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 15.05.2025
Témata:
ISSN:0022-0396, 1090-2732
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the eigenvalue problem for the Laplacian with mixed Dirichlet and Neumann boundary conditions. For a certain class of bounded, simply connected planar domains we prove monotonicity properties of the first eigenfunction. As a consequence, we establish a variant of the hot spots conjecture for mixed boundary conditions. Moreover, we obtain an inequality between the lowest eigenvalue of this mixed problem and the lowest eigenvalue of the corresponding dual problem where the Dirichlet and Neumann boundary conditions are interchanged. The proofs are based on a novel variational principle, which we establish.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2025.02.006