On the first eigenvalue and eigenfunction of the Laplacian with mixed boundary conditions

We consider the eigenvalue problem for the Laplacian with mixed Dirichlet and Neumann boundary conditions. For a certain class of bounded, simply connected planar domains we prove monotonicity properties of the first eigenfunction. As a consequence, we establish a variant of the hot spots conjecture...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations Jg. 427; S. 689 - 718
Hauptverfasser: Aldeghi, Nausica, Rohleder, Jonathan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.05.2025
Schlagworte:
ISSN:0022-0396, 1090-2732
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the eigenvalue problem for the Laplacian with mixed Dirichlet and Neumann boundary conditions. For a certain class of bounded, simply connected planar domains we prove monotonicity properties of the first eigenfunction. As a consequence, we establish a variant of the hot spots conjecture for mixed boundary conditions. Moreover, we obtain an inequality between the lowest eigenvalue of this mixed problem and the lowest eigenvalue of the corresponding dual problem where the Dirichlet and Neumann boundary conditions are interchanged. The proofs are based on a novel variational principle, which we establish.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2025.02.006