Multi-objective genetic algorithms based automated clustering for fuzzy association rules mining
Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most of the earlier algorithms proposed for fuzzy association rules mining either assume that fuzzy sets are given or employ a clustering algorith...
Saved in:
| Published in: | Journal of intelligent information systems Vol. 31; no. 3; pp. 243 - 264 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.12.2008
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0925-9902, 1573-7675 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most of the earlier algorithms proposed for fuzzy association rules mining either assume that fuzzy sets are given or employ a clustering algorithm, like CURE, to decide on fuzzy sets; for both cases the number of fuzzy sets is pre-specified. In this paper, we propose an automated method to decide on the number of fuzzy sets and for the autonomous mining of both fuzzy sets and fuzzy association rules. We achieve this by developing an automated clustering method based on multi-objective Genetic Algorithms (GA); the aim of the proposed approach is to automatically cluster values of a quantitative attribute in order to obtain large number of large itemsets in less time. We compare the proposed multi-objective GA based approach with two other approaches, namely: 1) CURE-based approach, which is known as one of the most efficient clustering algorithms; 2) Chien et al. clustering approach, which is an automatic interval partition method based on variation of density. Experimental results on 100 K transactions extracted from the adult data of USA census in year 2000 showed that the proposed automated clustering method exhibits good performance over both CURE-based approach and Chien et al.’s work in terms of runtime, number of large itemsets and number of association rules. |
|---|---|
| AbstractList | Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most of the earlier algorithms proposed for fuzzy association rules mining either assume that fuzzy sets are given or employ a clustering algorithm, like CURE, to decide on fuzzy sets; for both cases the number of fuzzy sets is pre-specified. In this paper, we propose an automated method to decide on the number of fuzzy sets and for the autonomous mining of both fuzzy sets and fuzzy association rules. We achieve this by developing an automated clustering method based on multi-objective Genetic Algorithms (GA); the aim of the proposed approach is to automatically cluster values of a quantitative attribute in order to obtain large number of large itemsets in less time. We compare the proposed multi-objective GA based approach with two other approaches, namely: 1) CURE-based approach, which is known as one of the most efficient clustering algorithms; 2) Chien et al. clustering approach, which is an automatic interval partition method based on variation of density. Experimental results on 100 K transactions extracted from the adult data of USA census in year 2000 showed that the proposed automated clustering method exhibits good performance over both CURE-based approach and Chien et al.’s work in terms of runtime, number of large itemsets and number of association rules. Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most of the earlier algorithms proposed for fuzzy association rules mining either assume that fuzzy sets are given or employ a clustering algorithm, like CURE, to decide on fuzzy sets; for both cases the number of fuzzy sets is pre-specified. In this paper, we propose an automated method to decide on the number of fuzzy sets and for the autonomous mining of both fuzzy sets and fuzzy association rules. We achieve this by developing an automated clustering method based on multi-objective Genetic Algorithms (GA); the aim of the proposed approach is to automatically cluster values of a quantitative attribute in order to obtain large number of large itemsets in less time. We compare the proposed multi-objective GA based approach with two other approaches, namely: 1) CURE-based approach, which is known as one of the most efficient clustering algorithms; 2) Chien et al. clustering approach, which is an automatic interval partition method based on variation of density. Experimental results on 100 K transactions extracted from the adult data of USA census in year 2000 showed that the proposed automated clustering method exhibits good performance over both CURE-based approach and Chien et al.'s work in terms of runtime, number of large itemsets and number of association rules. Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most of the earlier algorithms proposed for fuzzy association rules mining either assume that fuzzy sets are given or employ a clustering algorithm, like CURE, to decide on fuzzy sets; for both cases the number of fuzzy sets is pre-specified. In this paper, we propose an automated method to decide on the number of fuzzy sets and for the autonomous mining of both fuzzy sets and fuzzy association rules. We achieve this by developing an automated clustering method based on multi-objective Genetic Algorithms (GA); the aim of the proposed approach is to automatically cluster values of a quantitative attribute in order to obtain large number of large itemsets in less time. We compare the proposed multi-objective GA based approach with two other approaches, namely: 1) CURE-based approach, which is known as one of the most efficient clustering algorithms; 2) Chien et al. clustering approach, which is an automatic interval partition method based on variation of density. Experimental results on 100 K transactions extracted from the adult data of USA census in year 2000 showed that the proposed automated clustering method exhibits good performance over both CURE-based approach and Chien et al.'s work in terms of runtime, number of large itemsets and number of association rules. [PUBLICATION ABSTRACT] |
| Author | Alhajj, Reda Kaya, Mehmet |
| Author_xml | – sequence: 1 givenname: Reda surname: Alhajj fullname: Alhajj, Reda email: alhajj@cpsc.ucalgary.ca organization: Department of Computer Science, University of Calgary, Department of Computer Science, Global University – sequence: 2 givenname: Mehmet surname: Kaya fullname: Kaya, Mehmet organization: Department of Computer Engineering, Firat University |
| BookMark | eNqFkU9r3DAQxUVJoJs_HyA30UNvTkeWbUnHENokkJJLe3bH8nirxbY2klxIPn3kbqAQaIsY9A6_N0jvnbCj2c_E2IWASwGgPkUBuqqKLPNkId6xjaiVLFSj6iO2AVPWhTFQvmcnMe4AwOgGNuzH12VMrvDdjmxyv4hvaabkLMdx64NLP6fIO4zUc1ySnzBlZcclJgpu3vLBBz4sz89PHGP01mFyfuZhGSnyyc0ZOWPHA46Rzl_vU_b9y-dv17fF_cPN3fXVfWGlUqmQZA2S6gw0tsTB9n2lgcD0SgHapumozkdDh7oaalSSjO4JpZC6RDMM8pR9POzdB_-4UEzt5KKlccSZ_BJbWWktmkb-FyxzfqqsVvDDG3DnlzDnT6yMULoGkSF1gGzwMQYaWuvS7xRSQDe2Atq1n_bQT7vKtZ92dYo3zn1wE4anf3rKgyfu1_gp_HnS300v9PKmfQ |
| CitedBy_id | crossref_primary_10_1007_s10489_009_0160_4 crossref_primary_10_1109_TSMCC_2009_2033566 crossref_primary_10_1186_s41044_016_0003_3 crossref_primary_10_3233_IFS_151968 crossref_primary_10_1109_ACCESS_2019_2933505 crossref_primary_10_1155_2012_258476 crossref_primary_10_1007_s10796_016_9690_6 crossref_primary_10_1016_j_eswa_2020_113781 crossref_primary_10_1080_13658816_2018_1434525 crossref_primary_10_1002_widm_40 crossref_primary_10_1007_s00500_021_06613_4 crossref_primary_10_1016_j_ins_2020_02_073 crossref_primary_10_1109_TEVC_2013_2290082 crossref_primary_10_1007_s00500_010_0670_3 crossref_primary_10_1016_j_asoc_2019_105518 crossref_primary_10_1016_j_knosys_2013_11_003 crossref_primary_10_1109_TFUZZ_2010_2060200 crossref_primary_10_1080_18756891_2012_685314 crossref_primary_10_1109_TFUZZ_2012_2201338 crossref_primary_10_1007_s10489_009_0206_7 crossref_primary_10_1016_j_datak_2009_10_001 crossref_primary_10_1080_1206212X_2019_1612993 |
| Cites_doi | 10.1016/S0019-9958(65)90241-X 10.1016/S0306-4379(01)00008-4 10.1109/4235.797969 10.1016/S0165-0114(96)00377-6 10.1023/A:1006504901164 10.1145/273244.273257 10.1016/S1088-467X(99)00028-1 10.1016/S0165-0114(99)00065-2 10.1007/3-540-46146-9_14 10.7551/mitpress/1090.001.0001 10.1109/ISIE.2001.931767 10.1109/FUZZY.1996.552395 10.1007/978-3-662-02830-8 10.1145/253260.253361 10.1109/CAIA.1995.378813 10.1145/233269.233311 10.1109/ICDE.1997.581756 10.1145/266714.266898 10.1109/TAI.1999.809772 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC 2007 Springer Science+Business Media, LLC 2008 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC 2007 – notice: Springer Science+Business Media, LLC 2008 |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L7M L~C L~D M0C M0N P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U FR3 P64 RC3 |
| DOI | 10.1007/s10844-007-0044-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) Genetics Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Computer and Information Systems Abstracts Genetics Abstracts ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7675 |
| EndPage | 264 |
| ExternalDocumentID | 1591121491 10_1007_s10844_007_0044_1 |
| Genre | Feature |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7X Z81 Z83 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI Q9U FR3 P64 PUEGO RC3 |
| ID | FETCH-LOGICAL-c377t-3ec9ae7b906c2afcdd480e09d770ac66be5e5e80ba84f5a73e98dea31382a9ff3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000260769100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-9902 |
| IngestDate | Fri Sep 05 06:53:29 EDT 2025 Thu Oct 02 14:22:37 EDT 2025 Tue Nov 04 16:32:12 EST 2025 Sat Nov 29 06:21:33 EST 2025 Tue Nov 18 21:49:55 EST 2025 Fri Feb 21 02:36:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Multi-objective genetic algorithms CURE Fuzziness Automated clustering Data mining Fuzzy association rules |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c377t-3ec9ae7b906c2afcdd480e09d770ac66be5e5e80ba84f5a73e98dea31382a9ff3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
| PQID | 200178501 |
| PQPubID | 30807 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_34881663 proquest_miscellaneous_20047243 proquest_journals_200178501 crossref_citationtrail_10_1007_s10844_007_0044_1 crossref_primary_10_1007_s10844_007_0044_1 springer_journals_10_1007_s10844_007_0044_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20081200 2008-12-00 20081201 |
| PublicationDateYYYYMMDD | 2008-12-01 |
| PublicationDate_xml | – month: 12 year: 2008 text: 20081200 |
| PublicationDecade | 2000 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: New York |
| PublicationSubtitle | Integrating Artificial Intelligence and Database Technologies |
| PublicationTitle | Journal of intelligent information systems |
| PublicationTitleAbbrev | J Intell Inf Syst |
| PublicationYear | 2008 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Pedrycz (CR23) 1998; 98 Zitzler, Thiele (CR30) 1999; 3 CR19 CR17 CR16 CR14 CR13 Hirota, Pedrycz (CR11) 1996; 2 Kuok, Fu, Wong (CR18) 1998; 17 Guha, Rastogi, Shim (CR8) 2001; 26 CR2 CR4 Zadeh (CR28) 1965; 8 CR3 CR6 CR5 CR29 CR9 Herrera, Lozano, Verdegay (CR10) 1998; 12 CR27 CR26 CR25 CR24 CR22 Arslan, Kaya (CR1) 2001; 118 Goldberg (CR7) 1989 CR21 CR20 Holland (CR12) 1992 Hong, Kuo, Chi (CR15) 1999; 3 S. Guha (44_CR8) 2001; 26 W. Pedrycz (44_CR23) 1998; 98 44_CR26 44_CR27 F. Herrera (44_CR10) 1998; 12 44_CR24 44_CR25 D. E. Goldberg (44_CR7) 1989 T. P. Hong (44_CR15) 1999; 3 K. Hirota (44_CR11) 1996; 2 L. A. Zadeh (44_CR28) 1965; 8 44_CR29 A. Arslan (44_CR1) 2001; 118 J. H. Holland (44_CR12) 1992 44_CR22 44_CR20 44_CR21 44_CR2 44_CR3 44_CR4 44_CR5 44_CR16 44_CR13 44_CR14 44_CR6 44_CR19 44_CR17 44_CR9 C. M. Kuok (44_CR18) 1998; 17 E. Zitzler (44_CR30) 1999; 3 |
| References_xml | – ident: CR22 – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: CR28 article-title: Fuzzy sets publication-title: Information and Control doi: 10.1016/S0019-9958(65)90241-X – volume: 26 start-page: 35 issue: 1 year: 2001 end-page: 58 ident: CR8 article-title: Cure: An efficient clustering algorithm for large databases publication-title: Information Systems doi: 10.1016/S0306-4379(01)00008-4 – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR16 – volume: 3 start-page: 257 issue: 4 year: 1999 end-page: 271 ident: CR30 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – ident: CR6 – ident: CR29 – ident: CR25 – ident: CR27 – volume: 2 start-page: 1488 year: 1996 end-page: 1496 ident: CR11 article-title: Linguistic data mining and fuzzy modelling publication-title: Proceedings of IEEE International Conference on Fuzzy Systems – volume: 98 start-page: 279 year: 1998 end-page: 290 ident: CR23 article-title: Fuzzy sets technology in knowledge discovery publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(96)00377-6 – ident: CR21 – ident: CR19 – volume: 12 start-page: 265 issue: 4 year: 1998 end-page: 319 ident: CR10 article-title: Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis publication-title: Artificial Intelligence Review doi: 10.1023/A:1006504901164 – ident: CR3 – ident: CR17 – ident: CR13 – ident: CR9 – year: 1992 ident: CR12 publication-title: Adaptation in natural and artificial systems – volume: 17 start-page: 41 issue: 1 year: 1998 end-page: 46 ident: CR18 article-title: Mining fuzzy association rules in databases publication-title: SIGMOD Record doi: 10.1145/273244.273257 – volume: 3 start-page: 363 year: 1999 end-page: 376 ident: CR15 article-title: Mining association rules from quantitative data publication-title: Intelligent Data Analysis doi: 10.1016/S1088-467X(99)00028-1 – volume: 118 start-page: 297 issue: 2 year: 2001 end-page: 306 ident: CR1 article-title: Determination of fuzzy logic membership functions using genetic algorithms publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(99)00065-2 – ident: CR5 – year: 1989 ident: CR7 publication-title: Genetic algorithms in search, optimization, and machine learning – ident: CR26 – ident: CR24 – ident: CR20 – volume: 12 start-page: 265 issue: 4 year: 1998 ident: 44_CR10 publication-title: Artificial Intelligence Review doi: 10.1023/A:1006504901164 – volume: 8 start-page: 338 year: 1965 ident: 44_CR28 publication-title: Information and Control doi: 10.1016/S0019-9958(65)90241-X – ident: 44_CR25 – volume-title: Genetic algorithms in search, optimization, and machine learning year: 1989 ident: 44_CR7 – ident: 44_CR17 doi: 10.1007/3-540-46146-9_14 – volume: 98 start-page: 279 year: 1998 ident: 44_CR23 publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(96)00377-6 – volume-title: Adaptation in natural and artificial systems year: 1992 ident: 44_CR12 doi: 10.7551/mitpress/1090.001.0001 – ident: 44_CR16 doi: 10.1109/ISIE.2001.931767 – volume: 2 start-page: 1488 year: 1996 ident: 44_CR11 publication-title: Proceedings of IEEE International Conference on Fuzzy Systems doi: 10.1109/FUZZY.1996.552395 – ident: 44_CR20 doi: 10.1007/978-3-662-02830-8 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 44_CR30 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – ident: 44_CR5 – volume: 118 start-page: 297 issue: 2 year: 2001 ident: 44_CR1 publication-title: Fuzzy Sets and Systems doi: 10.1016/S0165-0114(99)00065-2 – ident: 44_CR9 – volume: 26 start-page: 35 issue: 1 year: 2001 ident: 44_CR8 publication-title: Information Systems doi: 10.1016/S0306-4379(01)00008-4 – volume: 3 start-page: 363 year: 1999 ident: 44_CR15 publication-title: Intelligent Data Analysis – ident: 44_CR21 doi: 10.1145/253260.253361 – ident: 44_CR27 doi: 10.1109/CAIA.1995.378813 – ident: 44_CR14 – ident: 44_CR24 doi: 10.1145/233269.233311 – ident: 44_CR22 – ident: 44_CR19 doi: 10.1109/ICDE.1997.581756 – ident: 44_CR26 – volume: 17 start-page: 41 issue: 1 year: 1998 ident: 44_CR18 publication-title: SIGMOD Record doi: 10.1145/273244.273257 – ident: 44_CR2 – ident: 44_CR3 doi: 10.1145/266714.266898 – ident: 44_CR6 – ident: 44_CR13 – ident: 44_CR4 – ident: 44_CR29 doi: 10.1109/TAI.1999.809772 |
| SSID | ssj0009860 |
| Score | 1.9847721 |
| Snippet | Researchers realized the importance of integrating fuzziness into association rules mining in databases with binary and quantitative attributes. However, most... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 243 |
| SubjectTerms | Artificial Intelligence Associations Automation Chromosomes Clustering Computer Science Data mining Data Structures and Information Theory Fuzzy logic Fuzzy sets Genetic algorithms Information Storage and Retrieval IT in Business Natural Language Processing (NLP) Optimization Set theory Studies |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global (OCUL) dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jj9MwFH6CwoHLdNhEpwP4wAlk4cSJHZ9Go4pqLlQcQOotOF5Y1DalSUaa_vqxnaQRSO0F5WIpTvKUt8pv-QDecZ6mcWYVJopqnKhU4Uwbin3PJLNcS2ZlAJvgi0W2XIovXW1O1ZVV9jYxGGpdKn9G_jFugeRJdLX9gz1olE-udggaD-GRD2x8Rd9nMhtm7mahSZiIOMXO6MZ9UrPtnMuSBIdzOuIW0d9uaYg1_0mPBq8zH_8nvedw1oWb6LqVj6fwwGyewbiHckCdZj-H76ERF5fF79YAIidXvr0RydUP99r657pC3uFpJJu6dFGuW6lV46csOLqRi3yRbfb7OyQHdqNdszIVWgcIihfwbf7p6-wGd-ALWFHOa0yNEtLwQhCmYmmV1klGDBGacyIVY4VJ3ZWRQmaJTSWnRjgmS-pnGkphLX0Jo025Ma8AFYWlETMe3kwmtmBCGOZMgS4iRoSxYgKk__e56iaTe4CMVT7MVPbsyv3SsyuPJvD-8Mi2HctxavO0Z1HeaWiVH_gzgbeHu061fL5EbkzZhC0JjxN6fAd15i9yMdsEPvRyMnzhKD0XJ-mZwpNQkxJKZi5hVO8a8xoeq9v6V7V7EyT8HpT4A8A priority: 102 providerName: ProQuest |
| Title | Multi-objective genetic algorithms based automated clustering for fuzzy association rules mining |
| URI | https://link.springer.com/article/10.1007/s10844-007-0044-1 https://www.proquest.com/docview/200178501 https://www.proquest.com/docview/20047243 https://www.proquest.com/docview/34881663 |
| Volume | 31 |
| WOSCitedRecordID | wos000260769100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-7675 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009860 issn: 0925-9902 databaseCode: 7WY dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1573-7675 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009860 issn: 0925-9902 databaseCode: M0C dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7675 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009860 issn: 0925-9902 databaseCode: P5Z dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7675 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009860 issn: 0925-9902 databaseCode: K7- dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7675 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0009860 issn: 0925-9902 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7675 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009860 issn: 0925-9902 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5By4EL5Sm2j8UHTiBLTpz4cYSqFVLFalVehUtwHBuKthu0SSrRX8_YmzQFUSRQJMuRJ4nlyTyS8cwH8FTKPE-Vt5RZXtHM5paqynEaciaFl5UR3kSwCTmbqZMTPe_zuJtht_sQkoya-kqym8oyGn-tMezgJ88mWjsV8BqO37wfK-2qmBrMdJpTVLXpEMr80y1-NUajh_lbUDTamsOt_5rlXbjTu5bkxfpduAc33PI-bA2wDaSX4gfwOSbd0rr8tlZ2BN-hkMpIzOJLvTptv541JBi3ipiurdGjxZ5ddKGiAs6EoJdLfHdx8YOYkbVk1S1cQ84i3MRDeHd48Hb_Fe2BFqjlUraUO6uNk6VmwqbG26rKFHNMV1IyY4UoXY6HYqVRmc-N5E4jQw0P9QuN9p4_go1lvXSPgZSl54lwAcrMZL4UWjuBYl-ViWDaeT0BNqx4Yfsq5AEMY1GM9ZPDChahG1awSCbw7PKS7-sSHH8j3hnYWPTS2ASozUSqnOHok8tRFKMQGzFLV3eRJJNpxq-n4KjqEvTPJvB84Pz4hGvns_1P1DtwO-5HidtldmGjXXVuD27Z8_a0WU3hpvzwcQqbLw9m82M8O5IU29dsH9t5_mka5eAnfFP_Ow |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBYluKE91KFAvYAOycGInthcIIaBqNWXEokjdpY4fBTSdlEkCav-Jf8R2kolAanddoGwsxUn8OD6-sX3vAXjOeZalwmlMNDWY6UxjYSzFwWcyd9yo3KkoNsFnM3F0JD-vwe_BFyYcqxw4MRK1qXRYI3-ddkLyJHl79gMH0aiwuTooaHSomNrzX_6PrX6z_8F374s03f14-H4P96ICWFPOG0ytlsryUpJcp8ppY5gglkjDOVE6z0ub-UuQUgnmMsWplb7wioZYfUo6R_17b8BNRgUPw2rK8RjjV0SnZCLTDHuST4dN1M5TTzCG47og8Ynk72lwtG3_2Y6Ns9zu5n_WPnfhTm9Oo3cd_u_Bml3ch81BqgL1zPUAjqOjMa7K7x3BIz9ugvsmUvMTX43m62mNwoRukGqbylvxPqXnbYgi4dsJecseufbi4hypEc5o2c5tjU6jxMZD-HIt9XwE64tqYbcAlaWjSW6DfJtirsyltLmnOlMmOZHWyQmQoa8L3UdeDwIg82KMGR3gUYRkgEeRTODl6pGzLuzIVZm3B0gUPQPVxQoPE9hZ3fXUEfaD1MJWbczCeMro5Tmop_fE26QTeDXgcvzCpeV5fGV5duD23uGng-Jgfzbdho14_iYeD3oC682ytU_hlv7ZfKuXz-LoQnB83XD9A7g2Y-A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAXylMsBeoDXEBWnTiJ4wNCiLKiKlrtAaSKS-r4UUDbTdkkoPaf8e8YO8lGILW3HlAuluI87Hz-PLFn5gN4LkSaxrnTlGluaKJTTXNjOfUxk5kTRmVOBbEJMZvlh4dyvgG_h1gY71Y5cGIgalNpv0a-G3dC8izadb1XxHxv-ub0B_UCUn6jdVDT6BByYM9-4d9b_Xp_Dz_1izievv_07gPtBQao5kI0lFstlRWlZJmOldPGJDmzTBohmNJZVtoUj5yVKk9cqgS3EhuiuM_bp6RzHO97Da4L_MX03oTz9MuY7zcPAcpMxilFwo-HDdUuai9PEhrWCBkWor-nxNHO_WdrNsx4063_uK_uwO3ezCZvu3FxFzbs8h5sDRIWpGe0-3AUApBpVX7viJ_gePJhnUQtjrEZzdeTmviJ3hDVNhVa91jSi9Znl8A-I2jxE9een58RNcKcrNqFrclJkN54AJ-vpJ0PYXNZLe0jIGXpeJRZL-umEldmUtoMKdCUUcakdXICbPjuhe4zsnthkEUx5pL2UCl80UOliCbwcn3JaZeO5LLK2wM8ip6Z6mKNjQnsrM8ipfh9IrW0VRuqJCJO-MU1ONJ-hLbqBF4NGB2fcOH7PL70fXbgJqK0-Lg_O9iGW8EtJ3gNPYHNZtXap3BD_2y-1atnYaAROLpqtP4BFI1tBA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+genetic+algorithms+based+automated+clustering+for+fuzzy+association+rules+mining&rft.jtitle=Journal+of+intelligent+information+systems&rft.au=Alhajj%2C+Reda&rft.au=Kaya%2C+Mehmet&rft.date=2008-12-01&rft.issn=0925-9902&rft.volume=31&rft.issue=3&rft.spage=243&rft.epage=264&rft_id=info:doi/10.1007%2Fs10844-007-0044-1&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9902&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9902&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9902&client=summon |