The numerical solution of forward and inverse Robin problems for Laplace’s equation

The Robin boundary value problem for Laplace’s equation in the elliptic region (which is a forward problem) and its related inverse problem can be used to reconstruct Robin coefficients from measurements on a partial boundary (inverse problem). We present a numerical solution of the forward problem...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Boundary value problems Ročník 2019; číslo 1; s. 1 - 13
Hlavní autori: Qu, Dan, Ma, Yan-Bo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.07.2019
Hindawi Limited
SpringerOpen
Predmet:
ISSN:1687-2770, 1687-2762, 1687-2770
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Robin boundary value problem for Laplace’s equation in the elliptic region (which is a forward problem) and its related inverse problem can be used to reconstruct Robin coefficients from measurements on a partial boundary (inverse problem). We present a numerical solution of the forward problem that uses a boundary integral equation method, and we propose a fast solver based on one that reduces the computational complexity to O ( N log ( N ) ) , where N is the size of the data. We compute the solution of the inverse problem using a preconditioned Krylov subspace method where the preconditioner is based on a block matrix decomposition. The structure of the matrix is then exploited to solve the direct problem. Numerical examples are presented to illustrate the effectiveness of the proposed approach.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-019-1229-6