Multi-innovation gradient estimation algorithms for multivariate equation-error autoregressive moving average systems based on the filtering technique

This study concentrates on the parameter estimation of multivariate pseudo-linear autoregressive moving average systems by means of the multi-innovation identification theory and data filtering technique. A multi-innovation stochastic gradient algorithm is derived by introducing the innovation lengt...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 13; číslo 13; s. 2086 - 2094
Hlavní autoři: Ma, Ping, Ding, Feng, Hayat, Tasawar
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 03.09.2019
Témata:
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study concentrates on the parameter estimation of multivariate pseudo-linear autoregressive moving average systems by means of the multi-innovation identification theory and data filtering technique. A multi-innovation stochastic gradient algorithm is derived by introducing the innovation length in the stochastic gradient algorithm. Then, the original system is transformed into two subsystems by using a filter. A filtering-based multi-innovation stochastic gradient algorithm is presented, whose parameter estimation accuracy is higher than the multi-innovation stochastic gradient algorithm. The simulation results confirm that these two algorithms are effective.
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2018.6132