Multi-innovation gradient estimation algorithms for multivariate equation-error autoregressive moving average systems based on the filtering technique
This study concentrates on the parameter estimation of multivariate pseudo-linear autoregressive moving average systems by means of the multi-innovation identification theory and data filtering technique. A multi-innovation stochastic gradient algorithm is derived by introducing the innovation lengt...
Uloženo v:
| Vydáno v: | IET control theory & applications Ročník 13; číslo 13; s. 2086 - 2094 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
03.09.2019
|
| Témata: | |
| ISSN: | 1751-8644, 1751-8652 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This study concentrates on the parameter estimation of multivariate pseudo-linear autoregressive moving average systems by means of the multi-innovation identification theory and data filtering technique. A multi-innovation stochastic gradient algorithm is derived by introducing the innovation length in the stochastic gradient algorithm. Then, the original system is transformed into two subsystems by using a filter. A filtering-based multi-innovation stochastic gradient algorithm is presented, whose parameter estimation accuracy is higher than the multi-innovation stochastic gradient algorithm. The simulation results confirm that these two algorithms are effective. |
|---|---|
| ISSN: | 1751-8644 1751-8652 |
| DOI: | 10.1049/iet-cta.2018.6132 |