Higher precision range estimation for context-based adaptive binary arithmetic coding

The Lagrangian rate distortion optimisation is widely employed in modern video encoders, such as high-efficiency video coding (H.265/HEVC). In this work, the authors propose a more accurate context-based adaptive binary arithmetic coding look-up table that can enhance compression quality and provide...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET image processing Ročník 14; číslo 1; s. 125 - 131
Hlavní autoři: Im, Sio-Kei, Chan, Ka-Hou
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 10.01.2020
Témata:
ISSN:1751-9659, 1751-9667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Lagrangian rate distortion optimisation is widely employed in modern video encoders, such as high-efficiency video coding (H.265/HEVC). In this work, the authors propose a more accurate context-based adaptive binary arithmetic coding look-up table that can enhance compression quality and provide substantially better accuracy of range estimation, by employing one-more bit with 64 probability states. For the hardware implementation, they propose a higher precision look-up table instead of the HEVC Test Model (HM) standard table. The authors also define a new finite-state machine to handle the probability changing in real-time. The significant BD-RATE gain of the proposed context modelling is up to 6.0% for all-intra mode and 13.0% for inter mode. This finite state machine offers no divergence from the H.265/HEVC standards and can be used in the current systems.
ISSN:1751-9659
1751-9667
DOI:10.1049/iet-ipr.2018.6602