Topological structure of the space of composition operators on the Hardy space of Dirichlet series
The aim of this paper is to study when two composition operators on the Hilbert space of Dirichlet series with square summable coefficients belong to the same component or when their difference is compact. As a corollary we show that if a linear combination of composition operators with polynomial s...
Uloženo v:
| Vydáno v: | Journal of functional analysis Ročník 289; číslo 11; s. 111134 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.12.2025
Elsevier |
| Témata: | |
| ISSN: | 0022-1236, 1096-0783 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The aim of this paper is to study when two composition operators on the Hilbert space of Dirichlet series with square summable coefficients belong to the same component or when their difference is compact. As a corollary we show that if a linear combination of composition operators with polynomial symbols of degree at most 2 is compact, then each composition operator is compact. |
|---|---|
| ISSN: | 0022-1236 1096-0783 |
| DOI: | 10.1016/j.jfa.2025.111134 |