Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation

Fuzzy c-means (FCM) algorithm is an important clustering method in pattern recognition, while the fuzziness parameter, m, in FCM algorithm is a key parameter that can significantly affect the result of clustering. Cluster validity index (CVI) is a kind of criterion function to validate the clusterin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Science China. Information sciences Ročník 57; číslo 11; s. 247 - 254
Hlavní autori: Zhou, KaiLe, Fu, Chao, Yang, ShanLin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Heidelberg Science China Press 01.11.2014
Springer Nature B.V
Predmet:
ISSN:1674-733X, 1869-1919
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Fuzzy c-means (FCM) algorithm is an important clustering method in pattern recognition, while the fuzziness parameter, m, in FCM algorithm is a key parameter that can significantly affect the result of clustering. Cluster validity index (CVI) is a kind of criterion function to validate the clustering results, thereby determining the optimal cluster number of a data set. From the perspective of cluster validation, we propose a novel method to select the optimal value of m in FCM, and four well-known CVIs, namely XB, VK, VT, and SC, for fuzzy clustering are used. In this method, the optimal value of m is determined when CVIs reach their minimum values. Experimental results on four synthetic data sets and four real data sets have demonstrated that the range of m is [2, 3.5] and the optimal interval is [2.5, 3].
AbstractList Fuzzy c-means (FCM) algorithm is an important clustering method in pattern recognition, while the fuzziness parameter, m, in FCM algorithm is a key parameter that can significantly affect the result of clustering. Cluster validity index (CVI) is a kind of criterion function to validate the clustering results, thereby determining the optimal cluster number of a data set. From the perspective of cluster validation, we propose a novel method to select the optimal value of m in FCM, and four well-known CVIs, namely XB, VK, VT, and SC, for fuzzy clustering are used. In this method, the optimal value of m is determined when CVIs reach their minimum values. Experimental results on four synthetic data sets and four real data sets have demonstrated that the range of m is [2, 3.5] and the optimal interval is [2.5, 3].
Fuzzy c-means (FCM) algorithm is an important clustering method in pattern recognition, while the fuzziness parameter, m, in FCM algorithm is a key parameter that can significantly affect the result of clustering. Cluster validity index (CVI) is a kind of criterion function to validate the clustering results, thereby determining the optimal cluster number of a data set. From the perspective of cluster validation, we propose a novel method to select the optimal value of m in FCM, and four well-known CVIs, namely XB, VK, VT, and SC, for fuzzy clustering are used. In this method, the optimal value of m is determined when CVIs reach their minimum values. Experimental results on four synthetic data sets and four real data sets have demonstrated that the range of m is [2, 3.5] and the optimal interval is [2.5, 3].
Fuzzy c-means (FCM) algorithm is an important clustering method in pattern recognition, while the fuzziness parameter, m , in FCM algorithm is a key parameter that can significantly affect the result of clustering. Cluster validity index (CVI) is a kind of criterion function to validate the clustering results, thereby determining the optimal cluster number of a data set. From the perspective of cluster validation, we propose a novel method to select the optimal value of m in FCM, and four well-known CVIs, namely XB, VK, VT, and SC, for fuzzy clustering are used. In this method, the optimal value of m is determined when CVIs reach their minimum values. Experimental results on four synthetic data sets and four real data sets have demonstrated that the range of m is [2, 3.5] and the optimal interval is [2.5, 3].
Author ZHOU KaiLe FU Chao YANG ShanLin
AuthorAffiliation School of Management, Hefei University of Technology, Hefei 230009, China Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education Hefei 230009, China
Author_xml – sequence: 1
  givenname: KaiLe
  surname: Zhou
  fullname: Zhou, KaiLe
  email: kailezhou@gmail.com
  organization: School of Management, Hefei University of Technology, Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education
– sequence: 2
  givenname: Chao
  surname: Fu
  fullname: Fu, Chao
  organization: School of Management, Hefei University of Technology, Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education
– sequence: 3
  givenname: ShanLin
  surname: Yang
  fullname: Yang, ShanLin
  organization: School of Management, Hefei University of Technology, Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education
BookMark eNp9kE9KxDAUh4MoqKMHcBd04yaal7ZJuxRxVBDcKLoLmfZlptJJa9IKzlE8i3fyCqaOKLgwm5fF970_v12y6VqHhBwAPwHO1WkASBPBOKQsg1QyvkF2IJcFgwKKzfiXKmUqSR63yX4ITzy-JOFC5TvkYTqsVrXDEGhnvFlij54GbLDs69bR2lEbgVdasiUaFz7e3-jdAmmHPnQj84K0tbRshjCKL6apKzOae2TLmibg_nedkPvpxd35Fbu5vbw-P7thZaJkz2xeZWmlQFVcZlVlBa-UzWcgZkZWwgiDqCzPRWkQDBc5KqmEKDgoWdhZvGJCjtd9O98-Dxh6vaxDiU1jHLZD0CBjIiBkoSJ69Ad9agfv4nZaFJBnopCZjJRaU6VvQ_BodVn3Xyf13tSNBq7HzPU6cx0z12PmmkcT_pidr5fGv_7riLUTIuvm6H93-k86_B60aN38OXo_k6QUGVciU8knzvKiIQ
CitedBy_id crossref_primary_10_3233_IDA_215857
crossref_primary_10_1080_01605682_2022_2064782
crossref_primary_10_1007_s12145_021_00680_9
crossref_primary_10_1016_j_enbuild_2021_111376
crossref_primary_10_1080_00051144_2023_2244307
crossref_primary_10_1080_17538157_2025_2550968
crossref_primary_10_1109_TFUZZ_2018_2856081
crossref_primary_10_1007_s11432_014_5267_5
crossref_primary_10_1109_ACCESS_2020_2985425
crossref_primary_10_5194_amt_17_1811_2024
crossref_primary_10_1109_TFUZZ_2022_3217343
crossref_primary_10_3389_fgene_2021_667936
crossref_primary_10_1002_smr_2260
crossref_primary_10_1080_10618600_2025_2489537
crossref_primary_10_4054_DemRes_2024_51_16
crossref_primary_10_1109_TNSM_2020_2966951
crossref_primary_10_3390_fi13090233
crossref_primary_10_1109_TFUZZ_2025_3581918
crossref_primary_10_3233_IDA_216058
crossref_primary_10_7717_peerj_5416
crossref_primary_10_3233_IFS_151811
crossref_primary_10_1080_00051144_2023_2284027
Cites_doi 10.1016/j.ins.2007.06.028
10.1016/j.patrec.2009.09.011
10.3233/IDA-2012-0545
10.1109/TPAMI.2002.1114856
10.1016/0031-3203(92)90102-O
10.1109/72.159057
10.1016/j.patrec.2010.11.006
10.1007/BF02294713
10.1016/j.patrec.2012.08.014
10.1007/978-1-4757-0450-1
10.1049/el:19981523
10.1016/S1361-8415(00)00035-9
10.1109/TSMCB.2003.810951
10.1109/34.85677
10.1109/TFUZZ.2006.889763
10.1016/j.patrec.2005.04.007
10.1109/TSMC.1976.4309506
10.1109/TSMC.1987.6499296
10.1016/0098-3004(84)90020-7
10.1016/j.patrec.2010.08.007
10.1016/j.patcog.2011.07.012
10.1016/S0167-8655(00)00016-7
10.1109/91.413225
10.1016/j.fss.2007.03.004
10.1109/TPAMI.1986.4767778
10.1109/TNN.2005.845141
10.5121/ijcses.2010.1207
10.1016/j.patcog.2012.07.021
10.1007/s11432-012-4748-7
10.1109/TFUZZ.1997.554463
10.1109/FUZZY.1992.258640
10.1109/91.493905
10.1016/j.knosys.2012.05.012
10.1016/j.patcog.2010.04.025
10.1080/01969727308546046
10.1016/j.ins.2007.10.004
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2014
Science China Press and Springer-Verlag Berlin Heidelberg 2014.
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2014
– notice: Science China Press and Springer-Verlag Berlin Heidelberg 2014.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7SC
8FD
L7M
L~C
L~D
DOI 10.1007/s11432-014-5146-0
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Computer and Information Systems Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Advanced Technologies & Aerospace Collection
Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
DocumentTitleAlternate Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation
EISSN 1869-1919
EndPage 254
ExternalDocumentID 10_1007_s11432_014_5146_0
662507257
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCEZO
CCPQU
CHBEP
COF
CQIGP
CSCUP
CUBFJ
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9O
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TR2
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
~WA
-SI
-S~
0R~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEI
CJPJV
H13
Q--
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
AFDZB
AFFHD
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
7SC
8FD
L7M
L~C
L~D
PUEGO
ID FETCH-LOGICAL-c376t-f8d54d717d065ddf20d7f8b12ba6d2a2aee7f082cae1a028e76722901769fb033
IEDL.DBID P5Z
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343081700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1674-733X
IngestDate Thu Sep 04 16:57:33 EDT 2025
Fri Nov 07 23:36:05 EST 2025
Sat Nov 29 03:42:13 EST 2025
Tue Nov 18 21:42:58 EST 2025
Fri Feb 21 02:34:11 EST 2025
Wed Feb 14 10:38:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords fuzziness parameter
cluster validity index
clustering
cluster validation
fuzzy c-means (FCM)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c376t-f8d54d717d065ddf20d7f8b12ba6d2a2aee7f082cae1a028e76722901769fb033
Notes 11-5847/TP
clustering, fuzziness parameter, fuzzy c-means (FCM), cluster validation, cluster validity index
Fuzzy c-means (FCM) algorithm is an important clustering method in pattern recognition, while the fuzziness parameter, m, in FCM algorithm is a key parameter that can significantly affect the result of clustering. Cluster validity index (CVI) is a kind of criterion function to validate the clustering results, thereby determining the optimal cluster number of a data set. From the perspective of cluster validation, we propose a novel method to select the optimal value of m in FCM, and four well-known CVIs, namely XB, VK, VT, and SC, for fuzzy clustering are used. In this method, the optimal value of m is determined when CVIs reach their minimum values. Experimental results on four synthetic data sets and four real data sets have demonstrated that the range of m is [2, 3.5] and the optimal interval is [2.5, 3].
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2918529656
PQPubID 2043626
PageCount 8
ParticipantIDs proquest_miscellaneous_1651412697
proquest_journals_2918529656
crossref_citationtrail_10_1007_s11432_014_5146_0
crossref_primary_10_1007_s11432_014_5146_0
springer_journals_10_1007_s11432_014_5146_0
chongqing_primary_662507257
PublicationCentury 2000
PublicationDate 2014-11-01
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Science China. Information sciences
PublicationTitleAbbrev Sci. China Inf. Sci
PublicationTitleAlternate SCIENCE CHINA Information Sciences
PublicationYear 2014
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References CannonR LDaveJ VBezdekJ CEfficient implementation of the fuzzy c-means clustering algorithmsIEEE Trans Pattern Anal1986PAMI-824825510.1109/TPAMI.1986.4767778
HuangMXiaZWangHThe range of the value for the fuzzifier of the fuzzy c-means algorithmPattern Recogn Lett2012332280228410.1016/j.patrec.2012.08.014
KimMRamakrishnaR SNew indices for cluster validity assessmentPattern Recogn Lett2005262353236310.1016/j.patrec.2005.04.007
ZhangY JWangW NZhangX NA cluster validity index for fuzzy clusteringInfo Sci20081781205121810.1016/j.ins.2007.10.0041134.68050
WuK LAnalysis of parameter selections for fuzzy C-meansPattern Recogn20124540741510.1016/j.patcog.2011.07.0121225.68237
MaulikUBandyopadhyaySPerformance evaluation of some clustering algorithms and validity indicesIEEE Trans Pattern Anal2002241650165410.1109/TPAMI.2002.1114856
XieX LBeniGA validity measure for fuzzy clusteringIEEE Trans Pattern Anal19911384184710.1109/34.85677
ZalikK RCluster validity index for estimation of fuzzy clusters of different sizes and densitiesPattern Recogn2010433374339010.1016/j.patcog.2010.04.0251213.68558
DunnCA fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clustersJ Cybern19743325737585710.1080/01969727308546046
KwonS HCluster validity index for fuzzy clusteringElectron Lett1998342176217710.1049/el:19981523
GurrutxagaIMuguerzaJArbelaitzOTowards a standard methodology to evaluate internal cluster validity indicesPattern Recogn Lett20113250551510.1016/j.patrec.2010.11.006
DimitriadouEDolňicarSWeingesselAAn examination of indexes for determining the number of clusters in binary data setsPsychometrika200267137159196083210.1007/BF02294713
YueS HWuTCuiL JClustering mechanism for electric tomography imagingSci China Inf Sci20125528492864301104510.1007/s11432-012-4748-7
HoppnerFKlawonFKruseRFuzzy Cluster Analysis: Methods for Classifications Data Analysis and Image Recognition1999New YorkWiley
Jegatha DeborahLBaskaranRKannanAA survey on internal validity measure for cluster validationInt J Computer Sci Eng Surv201018510210.5121/ijcses.2010.1207
GuerraLRoblesVBielzaCA comparison of clustering quality indices using outliers and noiseIntell Data Anal201216703715
WangWZhangYOn fuzzy cluster validity indicesFuzzy Set Syst20071582095211710.1016/j.fss.2007.03.0041123.62046
BensaidA MHallL OBezdekJ CValidity-guided (Re)clustering with applications to image segmentationIEEE Trans Fuzzy Syst1996411212310.1109/91.493905
FrankAAsuncionAUCI Machine Learning Repository2010CaliforniaUniversity of California
ArbelaitzOGurrutxagaIMuguerzaJAn extensive comparative study of cluster validity indicesPattern Recogn20134624325610.1016/j.patcog.2012.07.021
JainA KData clustering: 50 years beyond k-meansPattern Recogn Lett20103165166610.1016/j.patrec.2009.09.011
DevijverP AKittlerJPattern Recognition: A Statistical Approach1982LondonPrentice-Hall0542.68071
HartiganJ AClustering Algorithms1975New YorkWiley0372.62040
YuJOn the fuzziness index of the FCM algorithmsChin J Comput200326965973
NiW WChongZ HClustering-oriented privacy-preserving data publishingKnowl-based Syst20123526427010.1016/j.knosys.2012.05.012
YuJChengQHuangHAnalysis of the weighting exponent in the FCMIEEE Trans Syst Man Cy B20043463463910.1109/TSMCB.2003.810951
BezdekJ CPattern recognition with fuzzy objective function algorithms1981New YorkPlenum Press10.1007/978-1-4757-0450-10503.68069
GevaA BSteinbergYBruckmairSA comparison of cluster validity criteria for a mixture of normal distributed dataPattern Recogn Lett20002151152910.1016/S0167-8655(00)00016-7
ChanK PCheungY SClustering of clustersPattern Recogn19922521121710.1016/0031-3203(92)90102-O
ChoeHJordanJ BOn the optimal choice of parameters in a fuzzy c-means algorithmProceedings of IEEE International Conference on Fuzzy Systems, IEEE Computer Society199234935410.1109/FUZZY.1992.258640
XuRWunschDIISurvey of clustering algorithmsIEEE Trans Neural Networ20051664567810.1109/TNN.2005.845141
OzkanITurksenI BEntropy assessment for type-2 fuzzinessProceedings of IEEE International Conference on Fuzzy Systems, IEEE Computer Society200411111115
HuC XLiuY MLiGImproved FOCUSS method for reconstruction of cluster structured sparse signals in radar imagingSci China Ser F-Inf Sci20125517761788296006710.1007/s11432-012-4628-11270.94017
HallL LBensaidA MClarkeL PA comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brainIEEE Trans Neural Networ2002367268210.1109/72.159057
ShenYShiHZhangJ QImprovement and optimization of a fuzzy c-means clustering algorithmProceedings of the 18th Instrumentation and Measurement Technology Conference, IEEE Computer Society200114301433
PalN RBezdekJ COn cluster validity for the fuzzy c-mean modelIEEE Trans Fuzzy Syst1995337037910.1109/91.413225
FadiliM JRuanSBloyetDOn the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time seriesMed Image Anal20015556710.1016/S1361-8415(00)00035-9
PalN RBezdekJ CCorrection to on cluster validity for the fuzzy c-means modelIEEE Trans Fuzzy Syst1997515215310.1109/TFUZZ.1997.554463
BezdekJ CA physical interpretation of fuzzy ISODATAIEEE Trans Syst Man Cy B1976SMC-6387390418548
ZalikK RZalikBValidity index for clusters of different sizes and densitiesPattern Recogn Lett20113222123410.1016/j.patrec.2010.08.007
OzkanITurksenI BUpper and lower values for the level of fuzziness in FCMInform Sci20071775143515210.1016/j.ins.2007.06.0281126.68610
BezdekJ CHathawayRConvergence theory for fuzzy c-means: Counterexamples and repairsIEEE Trans Syst Man Cy B19871787387710.1109/TSMC.1987.64992960653.68091
TangYSunFSunZImproved validation index for fuzzy clusteringProceedings of the 2005 American Control Conference, IEEE Computer Society200511201125
HwangCRheeF C HUncertain fuzzy clustering: Interval type-2 fuzzy approach to c-meansIEEE Trans Fuzzy Syst20071510712010.1109/TFUZZ.2006.889763
BezdekJ CEhrlishRFullWFCM: The fuzzy c-means clustering algorithmComput Geosci-UK19841019120310.1016/0098-3004(84)90020-7
O Arbelaitz (5146_CR38) 2013; 46
I Ozkan (5146_CR17) 2004
M Kim (5146_CR27) 2005; 26
E Dimitriadou (5146_CR43) 2002; 67
H Choe (5146_CR16) 1992
X L Xie (5146_CR29) 1991; 13
A K Jain (5146_CR3) 2010; 31
J Yu (5146_CR22) 2003; 26
A M Bensaid (5146_CR32) 1996; 4
Y Tang (5146_CR31) 2005
N R Pal (5146_CR9) 1995; 3
A B Geva (5146_CR42) 2000; 21
C Hwang (5146_CR21) 2007; 15
L Jegatha Deborah (5146_CR36) 2010; 1
K R Zalik (5146_CR40) 2011; 32
S H Kwon (5146_CR30) 1998; 34
L L Hall (5146_CR10) 2002; 3
Y J Zhang (5146_CR35) 2008; 178
K R Zalik (5146_CR41) 2010; 43
W W Ni (5146_CR6) 2012; 35
J C Bezdek (5146_CR8) 1981
P A Devijver (5146_CR25) 1982
R Xu (5146_CR4) 2005; 16
K P Chan (5146_CR15) 1992; 25
W Wang (5146_CR28) 2007; 158
L Guerra (5146_CR37) 2012; 16
U Maulik (5146_CR44) 2002; 24
M J Fadili (5146_CR24) 2001; 5
J C Bezdek (5146_CR14) 1987; 17
N R Pal (5146_CR45) 1997; 5
S H Yue (5146_CR2) 2012; 55
Y Shen (5146_CR12) 2001
R L Cannon (5146_CR11) 1986; PAMI-8
J A Hartigan (5146_CR1) 1975
A Frank (5146_CR34) 2010
C X Hu (5146_CR5) 2012; 55
I Gurrutxaga (5146_CR39) 2011; 32
C Dunn (5146_CR7) 1974; 3
J C Bezdek (5146_CR13) 1976; SMC-6
J Yu (5146_CR23) 2004; 34
M Huang (5146_CR20) 2012; 33
F Hoppner (5146_CR26) 1999
K L Wu (5146_CR19) 2012; 45
J C Bezdek (5146_CR33) 1984; 10
I Ozkan (5146_CR18) 2007; 177
References_xml – reference: YuJOn the fuzziness index of the FCM algorithmsChin J Comput200326965973
– reference: ZalikK RCluster validity index for estimation of fuzzy clusters of different sizes and densitiesPattern Recogn2010433374339010.1016/j.patcog.2010.04.0251213.68558
– reference: FrankAAsuncionAUCI Machine Learning Repository2010CaliforniaUniversity of California
– reference: DunnCA fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clustersJ Cybern19743325737585710.1080/01969727308546046
– reference: FadiliM JRuanSBloyetDOn the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time seriesMed Image Anal20015556710.1016/S1361-8415(00)00035-9
– reference: XuRWunschDIISurvey of clustering algorithmsIEEE Trans Neural Networ20051664567810.1109/TNN.2005.845141
– reference: DimitriadouEDolňicarSWeingesselAAn examination of indexes for determining the number of clusters in binary data setsPsychometrika200267137159196083210.1007/BF02294713
– reference: HallL LBensaidA MClarkeL PA comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brainIEEE Trans Neural Networ2002367268210.1109/72.159057
– reference: OzkanITurksenI BEntropy assessment for type-2 fuzzinessProceedings of IEEE International Conference on Fuzzy Systems, IEEE Computer Society200411111115
– reference: PalN RBezdekJ COn cluster validity for the fuzzy c-mean modelIEEE Trans Fuzzy Syst1995337037910.1109/91.413225
– reference: BensaidA MHallL OBezdekJ CValidity-guided (Re)clustering with applications to image segmentationIEEE Trans Fuzzy Syst1996411212310.1109/91.493905
– reference: BezdekJ CEhrlishRFullWFCM: The fuzzy c-means clustering algorithmComput Geosci-UK19841019120310.1016/0098-3004(84)90020-7
– reference: JainA KData clustering: 50 years beyond k-meansPattern Recogn Lett20103165166610.1016/j.patrec.2009.09.011
– reference: Jegatha DeborahLBaskaranRKannanAA survey on internal validity measure for cluster validationInt J Computer Sci Eng Surv201018510210.5121/ijcses.2010.1207
– reference: XieX LBeniGA validity measure for fuzzy clusteringIEEE Trans Pattern Anal19911384184710.1109/34.85677
– reference: TangYSunFSunZImproved validation index for fuzzy clusteringProceedings of the 2005 American Control Conference, IEEE Computer Society200511201125
– reference: KimMRamakrishnaR SNew indices for cluster validity assessmentPattern Recogn Lett2005262353236310.1016/j.patrec.2005.04.007
– reference: HartiganJ AClustering Algorithms1975New YorkWiley0372.62040
– reference: HoppnerFKlawonFKruseRFuzzy Cluster Analysis: Methods for Classifications Data Analysis and Image Recognition1999New YorkWiley
– reference: DevijverP AKittlerJPattern Recognition: A Statistical Approach1982LondonPrentice-Hall0542.68071
– reference: HuC XLiuY MLiGImproved FOCUSS method for reconstruction of cluster structured sparse signals in radar imagingSci China Ser F-Inf Sci20125517761788296006710.1007/s11432-012-4628-11270.94017
– reference: YuJChengQHuangHAnalysis of the weighting exponent in the FCMIEEE Trans Syst Man Cy B20043463463910.1109/TSMCB.2003.810951
– reference: WangWZhangYOn fuzzy cluster validity indicesFuzzy Set Syst20071582095211710.1016/j.fss.2007.03.0041123.62046
– reference: ZalikK RZalikBValidity index for clusters of different sizes and densitiesPattern Recogn Lett20113222123410.1016/j.patrec.2010.08.007
– reference: MaulikUBandyopadhyaySPerformance evaluation of some clustering algorithms and validity indicesIEEE Trans Pattern Anal2002241650165410.1109/TPAMI.2002.1114856
– reference: BezdekJ CPattern recognition with fuzzy objective function algorithms1981New YorkPlenum Press10.1007/978-1-4757-0450-10503.68069
– reference: GurrutxagaIMuguerzaJArbelaitzOTowards a standard methodology to evaluate internal cluster validity indicesPattern Recogn Lett20113250551510.1016/j.patrec.2010.11.006
– reference: CannonR LDaveJ VBezdekJ CEfficient implementation of the fuzzy c-means clustering algorithmsIEEE Trans Pattern Anal1986PAMI-824825510.1109/TPAMI.1986.4767778
– reference: ChanK PCheungY SClustering of clustersPattern Recogn19922521121710.1016/0031-3203(92)90102-O
– reference: WuK LAnalysis of parameter selections for fuzzy C-meansPattern Recogn20124540741510.1016/j.patcog.2011.07.0121225.68237
– reference: PalN RBezdekJ CCorrection to on cluster validity for the fuzzy c-means modelIEEE Trans Fuzzy Syst1997515215310.1109/TFUZZ.1997.554463
– reference: NiW WChongZ HClustering-oriented privacy-preserving data publishingKnowl-based Syst20123526427010.1016/j.knosys.2012.05.012
– reference: BezdekJ CA physical interpretation of fuzzy ISODATAIEEE Trans Syst Man Cy B1976SMC-6387390418548
– reference: GevaA BSteinbergYBruckmairSA comparison of cluster validity criteria for a mixture of normal distributed dataPattern Recogn Lett20002151152910.1016/S0167-8655(00)00016-7
– reference: BezdekJ CHathawayRConvergence theory for fuzzy c-means: Counterexamples and repairsIEEE Trans Syst Man Cy B19871787387710.1109/TSMC.1987.64992960653.68091
– reference: HuangMXiaZWangHThe range of the value for the fuzzifier of the fuzzy c-means algorithmPattern Recogn Lett2012332280228410.1016/j.patrec.2012.08.014
– reference: HwangCRheeF C HUncertain fuzzy clustering: Interval type-2 fuzzy approach to c-meansIEEE Trans Fuzzy Syst20071510712010.1109/TFUZZ.2006.889763
– reference: ChoeHJordanJ BOn the optimal choice of parameters in a fuzzy c-means algorithmProceedings of IEEE International Conference on Fuzzy Systems, IEEE Computer Society199234935410.1109/FUZZY.1992.258640
– reference: OzkanITurksenI BUpper and lower values for the level of fuzziness in FCMInform Sci20071775143515210.1016/j.ins.2007.06.0281126.68610
– reference: GuerraLRoblesVBielzaCA comparison of clustering quality indices using outliers and noiseIntell Data Anal201216703715
– reference: ShenYShiHZhangJ QImprovement and optimization of a fuzzy c-means clustering algorithmProceedings of the 18th Instrumentation and Measurement Technology Conference, IEEE Computer Society200114301433
– reference: KwonS HCluster validity index for fuzzy clusteringElectron Lett1998342176217710.1049/el:19981523
– reference: YueS HWuTCuiL JClustering mechanism for electric tomography imagingSci China Inf Sci20125528492864301104510.1007/s11432-012-4748-7
– reference: ZhangY JWangW NZhangX NA cluster validity index for fuzzy clusteringInfo Sci20081781205121810.1016/j.ins.2007.10.0041134.68050
– reference: ArbelaitzOGurrutxagaIMuguerzaJAn extensive comparative study of cluster validity indicesPattern Recogn20134624325610.1016/j.patcog.2012.07.021
– volume: 177
  start-page: 5143
  year: 2007
  ident: 5146_CR18
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2007.06.028
– volume-title: UCI Machine Learning Repository
  year: 2010
  ident: 5146_CR34
– start-page: 1430
  volume-title: Proceedings of the 18th Instrumentation and Measurement Technology Conference, IEEE Computer Society
  year: 2001
  ident: 5146_CR12
– volume: 31
  start-page: 651
  year: 2010
  ident: 5146_CR3
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2009.09.011
– volume-title: Fuzzy Cluster Analysis: Methods for Classifications Data Analysis and Image Recognition
  year: 1999
  ident: 5146_CR26
– volume: 16
  start-page: 703
  year: 2012
  ident: 5146_CR37
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2012-0545
– volume: 24
  start-page: 1650
  year: 2002
  ident: 5146_CR44
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/TPAMI.2002.1114856
– volume: 25
  start-page: 211
  year: 1992
  ident: 5146_CR15
  publication-title: Pattern Recogn
  doi: 10.1016/0031-3203(92)90102-O
– volume: 3
  start-page: 672
  year: 2002
  ident: 5146_CR10
  publication-title: IEEE Trans Neural Networ
  doi: 10.1109/72.159057
– volume: 32
  start-page: 505
  year: 2011
  ident: 5146_CR39
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2010.11.006
– volume: 67
  start-page: 137
  year: 2002
  ident: 5146_CR43
  publication-title: Psychometrika
  doi: 10.1007/BF02294713
– volume: 33
  start-page: 2280
  year: 2012
  ident: 5146_CR20
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2012.08.014
– volume-title: Pattern recognition with fuzzy objective function algorithms
  year: 1981
  ident: 5146_CR8
  doi: 10.1007/978-1-4757-0450-1
– volume: 26
  start-page: 965
  year: 2003
  ident: 5146_CR22
  publication-title: Chin J Comput
– volume: 55
  start-page: 1776
  year: 2012
  ident: 5146_CR5
  publication-title: Sci China Ser F-Inf Sci
– volume-title: Pattern Recognition: A Statistical Approach
  year: 1982
  ident: 5146_CR25
– volume: 34
  start-page: 2176
  year: 1998
  ident: 5146_CR30
  publication-title: Electron Lett
  doi: 10.1049/el:19981523
– volume: 5
  start-page: 55
  year: 2001
  ident: 5146_CR24
  publication-title: Med Image Anal
  doi: 10.1016/S1361-8415(00)00035-9
– volume: 34
  start-page: 634
  year: 2004
  ident: 5146_CR23
  publication-title: IEEE Trans Syst Man Cy B
  doi: 10.1109/TSMCB.2003.810951
– volume: 13
  start-page: 841
  year: 1991
  ident: 5146_CR29
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/34.85677
– volume: 15
  start-page: 107
  year: 2007
  ident: 5146_CR21
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2006.889763
– volume: 26
  start-page: 2353
  year: 2005
  ident: 5146_CR27
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.04.007
– volume-title: Clustering Algorithms
  year: 1975
  ident: 5146_CR1
– volume: SMC-6
  start-page: 387
  year: 1976
  ident: 5146_CR13
  publication-title: IEEE Trans Syst Man Cy B
  doi: 10.1109/TSMC.1976.4309506
– volume: 17
  start-page: 873
  year: 1987
  ident: 5146_CR14
  publication-title: IEEE Trans Syst Man Cy B
  doi: 10.1109/TSMC.1987.6499296
– volume: 10
  start-page: 191
  year: 1984
  ident: 5146_CR33
  publication-title: Comput Geosci-UK
  doi: 10.1016/0098-3004(84)90020-7
– volume: 32
  start-page: 221
  year: 2011
  ident: 5146_CR40
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2010.08.007
– volume: 45
  start-page: 407
  year: 2012
  ident: 5146_CR19
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2011.07.012
– start-page: 1120
  volume-title: Proceedings of the 2005 American Control Conference, IEEE Computer Society
  year: 2005
  ident: 5146_CR31
– volume: 21
  start-page: 511
  year: 2000
  ident: 5146_CR42
  publication-title: Pattern Recogn Lett
  doi: 10.1016/S0167-8655(00)00016-7
– volume: 3
  start-page: 370
  year: 1995
  ident: 5146_CR9
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.413225
– volume: 158
  start-page: 2095
  year: 2007
  ident: 5146_CR28
  publication-title: Fuzzy Set Syst
  doi: 10.1016/j.fss.2007.03.004
– volume: PAMI-8
  start-page: 248
  year: 1986
  ident: 5146_CR11
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/TPAMI.1986.4767778
– volume: 16
  start-page: 645
  year: 2005
  ident: 5146_CR4
  publication-title: IEEE Trans Neural Networ
  doi: 10.1109/TNN.2005.845141
– volume: 1
  start-page: 85
  year: 2010
  ident: 5146_CR36
  publication-title: Int J Computer Sci Eng Surv
  doi: 10.5121/ijcses.2010.1207
– volume: 46
  start-page: 243
  year: 2013
  ident: 5146_CR38
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.07.021
– volume: 55
  start-page: 2849
  year: 2012
  ident: 5146_CR2
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-012-4748-7
– volume: 5
  start-page: 152
  year: 1997
  ident: 5146_CR45
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.1997.554463
– start-page: 349
  volume-title: Proceedings of IEEE International Conference on Fuzzy Systems, IEEE Computer Society
  year: 1992
  ident: 5146_CR16
  doi: 10.1109/FUZZY.1992.258640
– volume: 4
  start-page: 112
  year: 1996
  ident: 5146_CR32
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/91.493905
– volume: 35
  start-page: 264
  year: 2012
  ident: 5146_CR6
  publication-title: Knowl-based Syst
  doi: 10.1016/j.knosys.2012.05.012
– start-page: 1111
  volume-title: Proceedings of IEEE International Conference on Fuzzy Systems, IEEE Computer Society
  year: 2004
  ident: 5146_CR17
– volume: 43
  start-page: 3374
  year: 2010
  ident: 5146_CR41
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2010.04.025
– volume: 3
  start-page: 32
  year: 1974
  ident: 5146_CR7
  publication-title: J Cybern
  doi: 10.1080/01969727308546046
– volume: 178
  start-page: 1205
  year: 2008
  ident: 5146_CR35
  publication-title: Info Sci
  doi: 10.1016/j.ins.2007.10.004
SSID ssj0000330278
Score 2.3246734
Snippet Fuzzy c-means (FCM) algorithm is an important clustering method in pattern recognition, while the fuzziness parameter, m, in FCM algorithm is a key parameter...
Fuzzy c-means (FCM) algorithm is an important clustering method in pattern recognition, while the fuzziness parameter, m , in FCM algorithm is a key parameter...
Fuzzy c-means (FCM) algorithm is an important clustering method in pattern recognition, while the fuzziness parameter, m, in FCM algorithm is a key parameter...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 247
SubjectTerms Algorithms
Clustering
Clusters
Computer Science
Datasets
FCM算法
Fuzzy
Fuzzy logic
Fuzzy set theory
Information Systems and Communication Service
Optimization
Parameters
Pattern recognition
Research Paper
Synthetic data
参数选择
有效性指数
模糊c均值
群集
聚类方法
聚类结果
验证
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADb8R4KUicQJHaLEtabgiBOCHES7tFaZPApNHBuiHBr8fp2hUQIMG5qRPZTuzE9meAfetSnjCTUm6TmHIRGJrogFO0rVxLG0XGmaLZhLy4iDqd-LKs486rbPcqJFmc1HWxG5p2n0bAKRp5vAZPwwxau8j3a7i6vps8rAQtH4orSuCEzzVstTpVNPM7Kh5T4aGf3T_jjJ9tU-1wfomRFqbnbPFfi16ChdLTJMdj1ViGKZutwGLVxYGUm3oF5j9AEq7C7dno7a1IhSceFfzRZ8uQvGiWgxIk3Yw4HPBKUvpo0codEdQz8lRXbJK-I2lv5OEXCCpxd9yyaQ3pnt6cnNOy9QJN8cQZUheZNjd41TPoohjjWGCki5KQJVoYppm2Vjr0HlJtQ40uipVCeuT4UIrYJSiCdWhk_cxuAEEXM-Es4JZZxnWbxabNrOWcIWe0NKIJWxMBqKcxxIYSeC0LJB4nTQgqkai0RC33zTN6qsZb9ixWyGLlWayCJhxMfqno_TJ4u5KzKndvrljsS8pjdHWbsDf5jPvOB1N0ZvujXIUCCYRMxLjEw0r2NYkfJ9z80-gtmGNeeYrix21oDAcjuwOz6cuwmw92C8V_B9al-6I
  priority: 102
  providerName: Springer Nature
Title Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation
URI http://lib.cqvip.com/qk/84009A/201411/662507257.html
https://link.springer.com/article/10.1007/s11432-014-5146-0
https://www.proquest.com/docview/2918529656
https://www.proquest.com/docview/1651412697
Volume 57
WOSCitedRecordID wos000343081700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: P5Z
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: K7-
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: BENPR
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: RSV
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcWp5i27IyEieQReL1xgkXVFArJKTVqjy04mI5fsBKbbJtdpHaX98Zb7IBJHrhkksS2_KMPZ89M98AvPTBylI4y6UvCy6zxPHSJJKjbZVG-Tx3wcViE2oyyWezYtpeuDVtWGW3J8aN2tWW7sjfiILSfAuEH-8WF5yqRpF3tS2hsQU7xJJApRum4--bO5ZkRF65mA2XUdjhaDTrHJsxew6xAsUlSI6oAc_VRK_ws65-XKDR-NNM9djzL3dptEIne_87_gew2-JPdrRWmIdwx1eP4P5vrISP4evJ6vo6RsMzIgY_p4AZ1sR6OShENq9YwA-umOXnHg3dW4aqxhZ90iarA7NnK2JgYKjH83XVpifY7vGXDx95W32BW9x0ljzkbiwdnvYcohTngkicCnmZitJkThhhvFcBAYQ1PjWIUrzKFJHHpyorQolT_xS2q7ryz4AhyiylSKQXXkiDs-DGwnspBQrAKJcN4GAz8XqxZtnQGZ7MEoU7ygCSThTatsTlVD_jTPeUyyRJjZLUJEmdDODV5peuvVs-PuwkptsF3OheXAN4sXmNS4_8Kaby9arRaYYNpCIrcIivO73om_hnh_u3d3gA9wQpZUx4PITt5eXKP4e79tdy3lwOYef98WR6OoStT4oPo77j8_TztxtutwPc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aBhLwwLiKsgFGgheQReJ6doI0IQRUmzoqHobUN-P4ApW2pFtapu1H7TdyTto0gMTe9sBzHDuxv3PzuQG8CNHJQnjHZShyLlXieWETyVG2SqtDlvnom2YTejTKxuP8yxpctLkwFFbZ8sSGUfvK0R35G5FTmm-O6se76TGnrlHkXW1baCxgMQxnp2iy1Tt7H_F8Xwox-HTwYZcvuwpwh8Q04zHz29KjFeNR-nofReJ1zIpUFFZ5YYUNQUcUjM6G1KL0DVppKoqeapXHIqELUGT512Q_00RXQ81Xdzr4kBx5ZOMpCnPs98etI7XJ1kPdhOIgJEctBe14Kufwoyq_H6OQ-lMsdrruX-7ZRuoNNv63_boDt5f6NXu_IIi7sBbKe3Drt6qL9-HrYH5-3kT7Myp8fkQBQaxu-gEhSNmkZBEHnDHHjwIK8rcMSYlNu6RUVkXmDudUYYIhnU4WXake4LxX8V8PYb2syvAIGGrRhRSJDCIIaXHX_bYIQUqBB261Vz3YXB20mS6qiBiFlmeikWP2IGmP3rhlYXbqD3JoupLShByDyDGEHJP04NXqlXa-SwZvtQgxSwZVmw4ePXi-eoyshfxFtgzVvDapwglSoXL8xNctDrsp_rng48sXfAY3dg8-75v9vdFwE24KIogmuXML1mcn8_AErrufs0l98rShLgbfrhqevwBGAF0g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9RAEJ8IGqIPIB_GE8Ql4Qmyod3b2219I-oFI7mQoOTeNtvuLlwCvZPemchf70yvvaoRE8Jzt7PtfHRmOzO_Adj3IZeZcDmXPku5VJHjmY0kR98qrfZJ4oKrhk3owSAZDtOzes5p2VS7NynJeU8DoTQV06OJC0dt4xu6eSopkBwdPh6Jl-CppDp6Oq6fXyx-skRdSstV7XCK6g673WGT2fwXFcJXuBoXl99x9z_9VBt8_pUvrdxQf-3RL_ASVusIlB3PVWYdnvhiA9aa6Q6sNvYNePEbVOEmfOvP7u6qEnlGaOE3VEXDymqIDkqWjQoWcMFPlvMbj97vPUP9Y5O2k5ONA8uvZwTLwFC5R_NRTltI99PXDye8HsnAc_wSTXlIXE86PAI6DF2cCyJyOiRZLDKrnLDCeq8DRhW59bHF0MVrpQlRPtYqDRmK4xUsF-PCvwaGoWcmRSS98ELankhdT3gvpUDOWO1UB7YXwjCTOfSGUXhcizR-ZjoQNeIxeY1mTkM1rk2Lw0wsNshiQyw2UQcOFrc09P6zeKeRuamtujQipVbzFEPgDuwtLqM9UpLFFn48K02skEAsVIqPeNjoQUvi3g3fPGj1O1g5-9g3p58HX7bhuSA9qvojd2B5ejvzb-FZ_mM6Km93K3v4BVeGB3k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzziness+parameter+selection+in+fuzzy+c-means%EF%BC%9A+The+perspective+of+cluster+validation&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%EF%BC%9A%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=ZHOU+KaiLe+FU+Chao+YANG+ShanLin&rft.date=2014-11-01&rft.issn=1674-733X&rft.eissn=1869-1919&rft.issue=11&rft.spage=247&rft.epage=254&rft_id=info:doi/10.1007%2Fs11432-014-5146-0&rft.externalDocID=662507257
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84009A%2F84009A.jpg