A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming

Stochastic integer programming (SIP) has recently been studied to manage the risk caused by geological uncertainty when solving mine planning and production scheduling problems of open pit mines. However, similar to other mathematical programming techniques that deploy integer variables, the main ob...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Resources policy Ročník 62; s. 571 - 579
Hlavní autoři: Mai, Ngoc Luan, Topal, Erkan, Erten, Oktay, Sommerville, Bruce
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.08.2019
Elsevier Science Ltd
Témata:
ISSN:0301-4207, 1873-7641
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Stochastic integer programming (SIP) has recently been studied to manage the risk caused by geological uncertainty when solving mine planning and production scheduling problems of open pit mines. However, similar to other mathematical programming techniques that deploy integer variables, the main obstacle of applying SIP on real-life datasets stems from the enormous number of integer variables required by its mathematical formulation, which is a function of number of mining blocks being processed and lifespan of the mining project. In this paper, a new framework is proposed for stochastic mine planning process which makes the application of SIP on large-scale datasets tractable. Firstly, mining blocks of simulated orebody models are clustered using TopCone algorithm to significantly reduce the scale of the data. A new SIP model is then developed to work on aggregated blocks so not only the net present value (NPV) is maximised and the risk of not meeting production targets is minimised, but also solution can be obtained in a practical timeframe. The scheduling result of the new SIP model is also compared to an integer programming (IP) model to highlight the ability to manage risk and generating higher NPV on a case study of a large-scale multi-element iron ore deposit in Pilbara region, Western Australia. •We develop a new risk-based optimisation method for iron ore production scheduling.•We use stochastic integer programming and a block aggregation technique called TopCone algorithm.•A case study in an iron ore deposit in Pilbara region, Western Australia shows a considerable increase of NPV and risk reduction.•The solution is achieved in a practical timeframe using a standard office computer.
AbstractList Stochastic integer programming (SIP) has recently been studied to manage the risk caused by geological uncertainty when solving mine planning and production scheduling problems of open pit mines. However, similar to other mathematical programming techniques that deploy integer variables, the main obstacle of applying SIP on real-life datasets stems from the enormous number of integer variables required by its mathematical formulation, which is a function of number of mining blocks being processed and lifespan of the mining project. In this paper, a new framework is proposed for stochastic mine planning process which makes the application of SIP on large-scale datasets tractable. Firstly, mining blocks of simulated orebody models are clustered using TopCone algorithm to significantly reduce the scale of the data. A new SIP model is then developed to work on aggregated blocks so not only the net present value (NPV) is maximised and the risk of not meeting production targets is minimised, but also solution can be obtained in a practical timeframe. The scheduling result of the new SIP model is also compared to an integer programming (IP) model to highlight the ability to manage risk and generating higher NPV on a case study of a large-scale multi-element iron ore deposit in Pilbara region, Western Australia.
Stochastic integer programming (SIP) has recently been studied to manage the risk caused by geological uncertainty when solving mine planning and production scheduling problems of open pit mines. However, similar to other mathematical programming techniques that deploy integer variables, the main obstacle of applying SIP on real-life datasets stems from the enormous number of integer variables required by its mathematical formulation, which is a function of number of mining blocks being processed and lifespan of the mining project. In this paper, a new framework is proposed for stochastic mine planning process which makes the application of SIP on large-scale datasets tractable. Firstly, mining blocks of simulated orebody models are clustered using TopCone algorithm to significantly reduce the scale of the data. A new SIP model is then developed to work on aggregated blocks so not only the net present value (NPV) is maximised and the risk of not meeting production targets is minimised, but also solution can be obtained in a practical timeframe. The scheduling result of the new SIP model is also compared to an integer programming (IP) model to highlight the ability to manage risk and generating higher NPV on a case study of a large-scale multi-element iron ore deposit in Pilbara region, Western Australia. •We develop a new risk-based optimisation method for iron ore production scheduling.•We use stochastic integer programming and a block aggregation technique called TopCone algorithm.•A case study in an iron ore deposit in Pilbara region, Western Australia shows a considerable increase of NPV and risk reduction.•The solution is achieved in a practical timeframe using a standard office computer.
Author Sommerville, Bruce
Mai, Ngoc Luan
Topal, Erkan
Erten, Oktay
Author_xml – sequence: 1
  givenname: Ngoc Luan
  surname: Mai
  fullname: Mai, Ngoc Luan
  email: ngocluan.mai@postgrad.curtin.edu.au
  organization: Western Australian School of Mines, Curtin University, Bentley, WA 6102, Australia
– sequence: 2
  givenname: Erkan
  surname: Topal
  fullname: Topal, Erkan
  email: E.Topal@curtin.edu.au
  organization: Western Australian School of Mines, Curtin University, Bentley, WA 6102, Australia
– sequence: 3
  givenname: Oktay
  orcidid: 0000-0002-1718-3400
  surname: Erten
  fullname: Erten, Oktay
  email: oktay.erten@curtin.edu.au
  organization: Western Australian School of Mines, Curtin University, Bentley, WA 6102, Australia
– sequence: 4
  givenname: Bruce
  surname: Sommerville
  fullname: Sommerville, Bruce
  email: Bruce.Sommerville2@riotinto.com
  organization: Rio Tinto, Perth, WA 6000, Australia
BookMark eNqNkEtPwzAQhC1UJNrCb8AS5wQ7TuJcOFQVL6kSFzhbfmxalyYOtgPi3-O2iAMXuOxKOzM70jdDk971gNAlJTkltL7e5h6CG_3gdnlBaJNTmhNSnqApbTjLeF3SCZoSRmhWFoSfoVkIW0JIxZt6ioYF7uEDexteMyUDGOyGaDsbZLSuxx3EjTO4dR7HDWDr0815wIN3ZtQHS9AbMOPO9ms8hv0M0emNDNFqbPsIa_B7-9rLrkvyOTpt5S7Axfeeo5e72-flQ7Z6un9cLlaZZryOGRSmLoBzBYaZVqmGAZPAlFKmAcUkJYoS3iSp0QQaXZZlVRSaS1WpquWEzdHV8W_qfhshRLFNkPpUKYqi4jXntKqSix9d2rsQPLRi8LaT_lNQIvZ4xVb84BV7vIJSkfCm5M2vpLbxAC16aXf_yC-OeUgQ3i14EbSFXoOxHnQUxtk_f3wB2a2jFQ
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107644
crossref_primary_10_1007_s10845_020_01562_5
crossref_primary_10_1080_17480930_2021_1949858
crossref_primary_10_1177_25726668241241993
crossref_primary_10_3390_math11122738
crossref_primary_10_1007_s11004_021_09984_4
crossref_primary_10_1016_j_resourpol_2025_105549
crossref_primary_10_1080_17480930_2023_2242163
crossref_primary_10_1016_j_resourpol_2021_102274
crossref_primary_10_1016_j_resourpol_2023_103340
crossref_primary_10_3390_math11183907
crossref_primary_10_1080_17480930_2022_2140543
crossref_primary_10_1007_s11053_021_09928_z
crossref_primary_10_1080_17480930_2022_2036559
crossref_primary_10_1080_17480930_2022_2065730
crossref_primary_10_3390_min11020172
crossref_primary_10_1007_s11081_020_09495_x
crossref_primary_10_1080_17480930_2019_1579693
crossref_primary_10_1016_j_resourpol_2020_101738
crossref_primary_10_3390_math10010100
crossref_primary_10_1016_j_resourpol_2024_104949
crossref_primary_10_1007_s00291_021_00618_z
crossref_primary_10_33271_nvngu_2022_5_026
crossref_primary_10_3390_math9091041
crossref_primary_10_3390_min10070585
crossref_primary_10_1016_j_resourpol_2023_103772
crossref_primary_10_1016_j_resourpol_2021_102086
crossref_primary_10_1016_j_resourpol_2022_102660
crossref_primary_10_1038_s41598_022_27336_y
crossref_primary_10_1016_j_resourpol_2022_103237
crossref_primary_10_1016_j_resourpol_2022_102640
crossref_primary_10_1016_j_resourpol_2024_104784
crossref_primary_10_3390_sym12040509
Cites_doi 10.1134/S1062739149010097
10.1287/opre.1120.1050
10.1504/IJMME.2011.042429
10.1016/j.asoc.2015.01.060
10.1080/09208119908944244
10.1080/17480930.2011.600827
10.1134/S1062739147020080
10.1134/S1062739147020018
10.1016/j.ejor.2005.12.035
10.1179/mnt.2002.111.1.82
10.17159/2411-9717/2018/v118n7a4
10.1016/j.ejor.2012.05.029
10.1016/j.resourpol.2013.01.004
10.1016/j.resourpol.2013.09.008
10.1179/1743286311Y.0000000009
10.1023/A:1007570402430
10.1023/A:1024835022186
10.1007/s11004-012-9402-9
10.1007/s11081-012-9186-2
10.1179/1743286311Y.0000000018
10.1179/174328607X228848
ContentType Journal Article
Copyright 2018
Copyright Elsevier Science Ltd. Aug 2019
Copyright_xml – notice: 2018
– notice: Copyright Elsevier Science Ltd. Aug 2019
DBID AAYXX
CITATION
7TA
7TQ
8BJ
8FD
DHY
DON
FQK
JBE
JG9
DOI 10.1016/j.resourpol.2018.11.004
DatabaseName CrossRef
Materials Business File
PAIS Index
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
PAIS International
PAIS International (Ovid)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Materials Business File
PAIS International
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-7641
EndPage 579
ExternalDocumentID 10_1016_j_resourpol_2018_11_004
S0301420717302763
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
3R3
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
9JO
AACTN
AAEDT
AAEDW
AAFFL
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARJD
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACLVX
ACRLP
ACROA
ACSBN
ADBBV
ADEZE
ADFHU
ADMUD
AEBSH
AEFWE
AEKER
AEYQN
AFKWA
AFODL
AFTJW
AFXIZ
AGHFR
AGTHC
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
ATOGT
AVARZ
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BELTK
BEZPJ
BGSCR
BKOJK
BLECG
BLXMC
BNTGB
BPUDD
BULVW
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HMY
HVGLF
HZ~
IHE
IMUCA
IXIXF
J1W
JARJE
KCYFY
KOM
LY5
LY6
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEB
SEE
SES
SEW
SPC
SPCBC
SSB
SSE
SSF
SSJ
SSO
SSR
SSS
SSZ
T5K
UHS
UNMZH
WH7
WUQ
YK3
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TA
7TQ
8BJ
8FD
DHY
DON
FQK
JBE
JG9
ID FETCH-LOGICAL-c376t-e2d62e77bed3dfbb83e3ae3bbbd8eb3a10b1078dfb8c0e8c444522c7ab5b5f703
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474330600050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-4207
IngestDate Sun Nov 09 03:40:11 EST 2025
Tue Nov 18 22:33:11 EST 2025
Sat Nov 29 07:24:29 EST 2025
Fri Feb 23 02:21:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Large-scale optimisation
Open pit mining
TopCone algorithm
Iron ore production scheduling
Stochastic integer programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c376t-e2d62e77bed3dfbb83e3ae3bbbd8eb3a10b1078dfb8c0e8c444522c7ab5b5f703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1718-3400
PQID 2257677155
PQPubID 2037026
PageCount 9
ParticipantIDs proquest_journals_2257677155
crossref_primary_10_1016_j_resourpol_2018_11_004
crossref_citationtrail_10_1016_j_resourpol_2018_11_004
elsevier_sciencedirect_doi_10_1016_j_resourpol_2018_11_004
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Resources policy
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Azimi, Osanloo, Esfahanipour (bib2) 2013; 38
Dimitrakopoulos (bib11) 2011; 47
Sandanayake, Topal, Asad (bib31) 2015; 30
Topal, Ramazan (bib36) 2012; 26
Leite, Dimitrakopoulos (bib21) 2007; 116
Ravenscroft (bib30) 1992; 101
Mai, Erten, Topal (bib24) 2016
Lamghari, Dimitrakopoulos (bib20) 2012; 222
Mai, Topal, Erten (bib25) 2018; 118
Ramazan, Dimitrakopoulos (bib27) 2004; 316
Caccetta, Hill (bib7) 2003; 27
Groeneveld, Topal, Leenders (bib18) 2012; 121
Ramazan (bib26) 2007; 177
Desbarats, Dimitrakopoulos (bib10) 2000; 32
Bleines, C., de Paris, E.d.M., 2000.
Little, Topal (bib22) 2011; 3
Benndorf, Dimitrakopoulos (bib4) 2013; 49
Erten, O., Kizil, M.S., Beamish, B.B., McAndrew, L., 2011.
Groeneveld, Topal (bib17) 2011; 47
Baker, C., Giacomo, S., 1998.
Godoy, Dimitrakopoulos (bib15) 2004; 316
Denby, Schofield (bib9) 1994; 103
Tabesh, Askari-Nasab (bib33) 2011; 120
Paper presented at the Computer applications in the minerals industries. International Symposium.
Mai, Erten, Topal (bib23) 2016
Tolwinski, B., 1998.
Chicoisne, Espinoza, Goycoolea, Moreno, Rubio (bib8) 2012; 60
Boucher, Dimitrakopoulos (bib6) 2012; 44
Asad, Dimitrakopoulos (bib1) 2013; 38
Paper presented at the Ore Reserves and Finance: A Joint Seminar between Australasian Institute of Mining and Metallurgy and ASX.
Paper presented at the 22nd International Mining Congress and Exhibition of Turkey-IMCET.
Geovariances and Ecole des Mines de Paris.
Ramazan, Dimitrakopoulos (bib28) 2007
Dowd, P., 1994. Risk assessment in reserve estimation and open-pit planning.
.
Ramazan, Dimitrakopoulos (bib29) 2013; 14
Goodfellow (bib16) 2014
Vallee (bib37) 2000; 93
Smith, Dimitrakopoulos (bib32) 1999; 13
Topal (bib35) 2008; 108
Jélvez, Morales, Nancel-Penard, Peypouquet, Reyes (bib19) 2015
Dimitrakopoulos, Farrelly, Godoy (bib12) 2002; 111
Azimi (10.1016/j.resourpol.2018.11.004_bib2) 2013; 38
Groeneveld (10.1016/j.resourpol.2018.11.004_bib17) 2011; 47
Groeneveld (10.1016/j.resourpol.2018.11.004_bib18) 2012; 121
Tabesh (10.1016/j.resourpol.2018.11.004_bib33) 2011; 120
Caccetta (10.1016/j.resourpol.2018.11.004_bib7) 2003; 27
Desbarats (10.1016/j.resourpol.2018.11.004_bib10) 2000; 32
Benndorf (10.1016/j.resourpol.2018.11.004_bib4) 2013; 49
10.1016/j.resourpol.2018.11.004_bib13
Chicoisne (10.1016/j.resourpol.2018.11.004_bib8) 2012; 60
10.1016/j.resourpol.2018.11.004_bib14
Leite (10.1016/j.resourpol.2018.11.004_bib21) 2007; 116
Mai (10.1016/j.resourpol.2018.11.004_bib24) 2016
Ravenscroft (10.1016/j.resourpol.2018.11.004_bib30) 1992; 101
Dimitrakopoulos (10.1016/j.resourpol.2018.11.004_bib11) 2011; 47
Lamghari (10.1016/j.resourpol.2018.11.004_bib20) 2012; 222
Smith (10.1016/j.resourpol.2018.11.004_bib32) 1999; 13
Sandanayake (10.1016/j.resourpol.2018.11.004_bib31) 2015; 30
Topal (10.1016/j.resourpol.2018.11.004_bib36) 2012; 26
Topal (10.1016/j.resourpol.2018.11.004_bib35) 2008; 108
Denby (10.1016/j.resourpol.2018.11.004_bib9) 1994; 103
Godoy (10.1016/j.resourpol.2018.11.004_bib15) 2004; 316
Jélvez (10.1016/j.resourpol.2018.11.004_bib19) 2015
Dimitrakopoulos (10.1016/j.resourpol.2018.11.004_bib12) 2002; 111
Little (10.1016/j.resourpol.2018.11.004_bib22) 2011; 3
Ramazan (10.1016/j.resourpol.2018.11.004_bib27) 2004; 316
Vallee (10.1016/j.resourpol.2018.11.004_bib37) 2000; 93
10.1016/j.resourpol.2018.11.004_bib34
Ramazan (10.1016/j.resourpol.2018.11.004_bib26) 2007; 177
10.1016/j.resourpol.2018.11.004_bib3
Goodfellow (10.1016/j.resourpol.2018.11.004_bib16) 2014
Mai (10.1016/j.resourpol.2018.11.004_bib25) 2018; 118
10.1016/j.resourpol.2018.11.004_bib5
Ramazan (10.1016/j.resourpol.2018.11.004_bib29) 2013; 14
Ramazan (10.1016/j.resourpol.2018.11.004_bib28) 2007
Asad (10.1016/j.resourpol.2018.11.004_bib1) 2013; 38
Boucher (10.1016/j.resourpol.2018.11.004_bib6) 2012; 44
Mai (10.1016/j.resourpol.2018.11.004_bib23) 2016
References_xml – reference: Dowd, P., 1994. Risk assessment in reserve estimation and open-pit planning.
– volume: 222
  start-page: 642
  year: 2012
  end-page: 652
  ident: bib20
  article-title: A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty
  publication-title: Eur. J. Oper. Res.
– start-page: 385
  year: 2007
  end-page: 391
  ident: bib28
  article-title: Stochastic optimisation of long-term production scheduling for open pit mines with a new integer programming formulation.
  publication-title: Australas. Inst. Min. Metall., Melb.
– volume: 316
  year: 2004
  ident: bib15
  article-title: Managing risk and waste mining in long-term production scheduling of open-pit mines
  publication-title: SME Trans.
– volume: 103
  year: 1994
  ident: bib9
  article-title: Open-pit design and scheduling by use of genetic algorithms.
  publication-title: Sect. A. Min. Ind.
– volume: 26
  start-page: 29
  year: 2012
  end-page: 37
  ident: bib36
  article-title: Strategic mine planning model using network flow model and real case application
  publication-title: Int. J. Min., Reclam. Environ.
– reference: Erten, O., Kizil, M.S., Beamish, B.B., McAndrew, L., 2011.
– volume: 47
  start-page: 212
  year: 2011
  end-page: 226
  ident: bib17
  article-title: Flexible open-pit mine design under uncertainty
  publication-title: J. Min. Sci.
– volume: 93
  start-page: 53
  year: 2000
  end-page: 61
  ident: bib37
  article-title: Mineral resource+ engineering, economic and legal feasibility
  publication-title: CIM Bull.
– volume: 120
  start-page: 158
  year: 2011
  end-page: 169
  ident: bib33
  article-title: Two-stage clustering algorithm for block aggregation in open pit mines
  publication-title: Min. Technol.
– volume: 177
  start-page: 1153
  year: 2007
  end-page: 1166
  ident: bib26
  article-title: The new fundamental tree algorithm for production scheduling of open pit mines
  publication-title: Eur. J. Oper. Res.
– reference: . Paper presented at the 22nd International Mining Congress and Exhibition of Turkey-IMCET.
– volume: 316
  year: 2004
  ident: bib27
  article-title: Recent applications of operations research and efficient MIP formulations in open pit mining
  publication-title: Soc. Min., Metall., Explor., Inc. Trans.
– reference: Bleines, C., de Paris, E.d.M., 2000. 
– reference: Tolwinski, B., 1998.
– volume: 3
  start-page: 152
  year: 2011
  end-page: 172
  ident: bib22
  article-title: Strategies to assist in obtaining an optimal solution for an underground mine planning problem using Mixed Integer Programming
  publication-title: Int. J. Min. Mineral. Eng.
– volume: 14
  start-page: 361
  year: 2013
  end-page: 380
  ident: bib29
  article-title: Production scheduling with uncertain supply: a new solution to the open pit mining problem
  publication-title: Optim. Eng.
– reference: . Paper presented at the Computer applications in the minerals industries. International Symposium.
– volume: 44
  start-page: 449
  year: 2012
  end-page: 468
  ident: bib6
  article-title: Multivariate block-support simulation of the Yandi iron ore deposit, Western Australia
  publication-title: Math. Geosci.
– reference: . Paper presented at the Ore Reserves and Finance: A Joint Seminar between Australasian Institute of Mining and Metallurgy and ASX.
– volume: 47
  start-page: 138
  year: 2011
  end-page: 150
  ident: bib11
  article-title: Stochastic optimization for strategic mine planning: a decade of developments
  publication-title: J. Min. Sci.
– volume: 49
  start-page: 68
  year: 2013
  end-page: 81
  ident: bib4
  article-title: Stochastic long-term production scheduling of iron ore deposits: integrating joint multi-element geological uncertainty
  publication-title: J. Min. Sci.
– reference: : Geovariances and Ecole des Mines de Paris.
– start-page: 577
  year: 2016
  end-page: 582
  ident: bib23
  article-title: Joint Conditional Simulation of an Iron Ore Deposit Using Minimum or Maximum Autocorrelation Factor Transformation
  publication-title: Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment
– volume: 32
  start-page: 919
  year: 2000
  end-page: 942
  ident: bib10
  article-title: Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors
  publication-title: Math. Geol.
– year: 2015
  ident: bib19
  article-title: Aggregation heuristic for the open-pit block scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 38
  start-page: 591
  year: 2013
  end-page: 597
  ident: bib1
  article-title: A heuristic approach to stochastic cutoff grade optimization for open pit mining complexes with multiple processing streams
  publication-title: Resour. Policy
– reference: Baker, C., Giacomo, S., 1998. 
– year: 2014
  ident: bib16
  article-title: Unified Modelling and Simultaneous Optimization of Open Pit Mining Complexes with Supply Uncertainty
– volume: 38
  start-page: 212
  year: 2013
  end-page: 223
  ident: bib2
  article-title: An uncertainty based multi-criteria ranking system for open pit mining cut-off grade strategy selection
  publication-title: Resour. Policy
– reference: .
– volume: 108
  start-page: 99
  year: 2008
  ident: bib35
  article-title: Early start and late start algorithms to improve the solution time for long-term underground mine production scheduling
  publication-title: J. South Afr. Inst. Min. Metall.
– start-page: 1
  year: 2016
  end-page: 11
  ident: bib24
  article-title: A new generic open pit mine planning process with risk assessment ability
  publication-title: Int. J. Coal Sci. Technol.
– volume: 27
  start-page: 349
  year: 2003
  end-page: 365
  ident: bib7
  article-title: An application of branch and cut to open pit mine scheduling
  publication-title: J. Glob. Optim.
– volume: 101
  year: 1992
  ident: bib30
  article-title: Risk analysis for mine scheduling by conditional simulation.
  publication-title: Sect. A. Min. Ind.
– volume: 116
  start-page: 109
  year: 2007
  end-page: 118
  ident: bib21
  article-title: Stochastic optimisation model for open pit mine planning: application and risk analysis at copper deposit
  publication-title: Min. Technol.
– volume: 30
  start-page: 595
  year: 2015
  end-page: 603
  ident: bib31
  article-title: A heuristic approach to optimal design of an underground mine stope layout
  publication-title: Appl. Soft Comput.
– volume: 60
  start-page: 517
  year: 2012
  end-page: 528
  ident: bib8
  article-title: A new algorithm for the open-pit mine production scheduling problem
  publication-title: Oper. Res.
– volume: 118
  year: 2018
  ident: bib25
  article-title: A new open-pit mine planning optimization method using block aggregation and integer programming
  publication-title: J. South. Afr. Inst. Min. Metall.
– volume: 13
  start-page: 173
  year: 1999
  end-page: 178
  ident: bib32
  article-title: The influence of deposit uncertainty on mine production scheduling
  publication-title: Int. J. Surf. Min., Reclam. Environ.
– volume: 121
  start-page: 20
  year: 2012
  end-page: 28
  ident: bib18
  article-title: Robust, flexible and operational mine design strategies
  publication-title: Min. Technol.
– volume: 111
  start-page: 82
  year: 2002
  end-page: 88
  ident: bib12
  article-title: Moving forward from traditional optimization: grade uncertainty and risk effects in open-pit design
  publication-title: Min. Technol.
– volume: 49
  start-page: 68
  issue: 1
  year: 2013
  ident: 10.1016/j.resourpol.2018.11.004_bib4
  article-title: Stochastic long-term production scheduling of iron ore deposits: integrating joint multi-element geological uncertainty
  publication-title: J. Min. Sci.
  doi: 10.1134/S1062739149010097
– volume: 60
  start-page: 517
  issue: 3
  year: 2012
  ident: 10.1016/j.resourpol.2018.11.004_bib8
  article-title: A new algorithm for the open-pit mine production scheduling problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.1120.1050
– volume: 3
  start-page: 152
  issue: 2
  year: 2011
  ident: 10.1016/j.resourpol.2018.11.004_bib22
  article-title: Strategies to assist in obtaining an optimal solution for an underground mine planning problem using Mixed Integer Programming
  publication-title: Int. J. Min. Mineral. Eng.
  doi: 10.1504/IJMME.2011.042429
– volume: 30
  start-page: 595
  year: 2015
  ident: 10.1016/j.resourpol.2018.11.004_bib31
  article-title: A heuristic approach to optimal design of an underground mine stope layout
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.01.060
– volume: 13
  start-page: 173
  issue: 4
  year: 1999
  ident: 10.1016/j.resourpol.2018.11.004_bib32
  article-title: The influence of deposit uncertainty on mine production scheduling
  publication-title: Int. J. Surf. Min., Reclam. Environ.
  doi: 10.1080/09208119908944244
– volume: 26
  start-page: 29
  issue: 1
  year: 2012
  ident: 10.1016/j.resourpol.2018.11.004_bib36
  article-title: Strategic mine planning model using network flow model and real case application
  publication-title: Int. J. Min., Reclam. Environ.
  doi: 10.1080/17480930.2011.600827
– volume: 47
  start-page: 212
  issue: 2
  year: 2011
  ident: 10.1016/j.resourpol.2018.11.004_bib17
  article-title: Flexible open-pit mine design under uncertainty
  publication-title: J. Min. Sci.
  doi: 10.1134/S1062739147020080
– start-page: 1
  year: 2016
  ident: 10.1016/j.resourpol.2018.11.004_bib24
  article-title: A new generic open pit mine planning process with risk assessment ability
  publication-title: Int. J. Coal Sci. Technol.
– volume: 101
  year: 1992
  ident: 10.1016/j.resourpol.2018.11.004_bib30
  article-title: Risk analysis for mine scheduling by conditional simulation. Transactions of the institution of mining and metallurgy
  publication-title: Sect. A. Min. Ind.
– ident: 10.1016/j.resourpol.2018.11.004_bib14
– volume: 108
  start-page: 99
  issue: 2
  year: 2008
  ident: 10.1016/j.resourpol.2018.11.004_bib35
  article-title: Early start and late start algorithms to improve the solution time for long-term underground mine production scheduling
  publication-title: J. South Afr. Inst. Min. Metall.
– volume: 47
  start-page: 138
  issue: 2
  year: 2011
  ident: 10.1016/j.resourpol.2018.11.004_bib11
  article-title: Stochastic optimization for strategic mine planning: a decade of developments
  publication-title: J. Min. Sci.
  doi: 10.1134/S1062739147020018
– volume: 316
  year: 2004
  ident: 10.1016/j.resourpol.2018.11.004_bib27
  article-title: Recent applications of operations research and efficient MIP formulations in open pit mining
  publication-title: Soc. Min., Metall., Explor., Inc. Trans.
– ident: 10.1016/j.resourpol.2018.11.004_bib3
– volume: 177
  start-page: 1153
  issue: 2
  year: 2007
  ident: 10.1016/j.resourpol.2018.11.004_bib26
  article-title: The new fundamental tree algorithm for production scheduling of open pit mines
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.12.035
– volume: 111
  start-page: 82
  issue: 1
  year: 2002
  ident: 10.1016/j.resourpol.2018.11.004_bib12
  article-title: Moving forward from traditional optimization: grade uncertainty and risk effects in open-pit design
  publication-title: Min. Technol.
  doi: 10.1179/mnt.2002.111.1.82
– ident: 10.1016/j.resourpol.2018.11.004_bib5
– year: 2015
  ident: 10.1016/j.resourpol.2018.11.004_bib19
  article-title: Aggregation heuristic for the open-pit block scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 118
  year: 2018
  ident: 10.1016/j.resourpol.2018.11.004_bib25
  article-title: A new open-pit mine planning optimization method using block aggregation and integer programming
  publication-title: J. South. Afr. Inst. Min. Metall.
  doi: 10.17159/2411-9717/2018/v118n7a4
– volume: 222
  start-page: 642
  issue: 3
  year: 2012
  ident: 10.1016/j.resourpol.2018.11.004_bib20
  article-title: A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2012.05.029
– volume: 38
  start-page: 212
  issue: 2
  year: 2013
  ident: 10.1016/j.resourpol.2018.11.004_bib2
  article-title: An uncertainty based multi-criteria ranking system for open pit mining cut-off grade strategy selection
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2013.01.004
– volume: 38
  start-page: 591
  issue: 4
  year: 2013
  ident: 10.1016/j.resourpol.2018.11.004_bib1
  article-title: A heuristic approach to stochastic cutoff grade optimization for open pit mining complexes with multiple processing streams
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2013.09.008
– volume: 316
  year: 2004
  ident: 10.1016/j.resourpol.2018.11.004_bib15
  article-title: Managing risk and waste mining in long-term production scheduling of open-pit mines
  publication-title: SME Trans.
– volume: 103
  year: 1994
  ident: 10.1016/j.resourpol.2018.11.004_bib9
  article-title: Open-pit design and scheduling by use of genetic algorithms. Transactions of the institution of mining and metallurgy
  publication-title: Sect. A. Min. Ind.
– volume: 120
  start-page: 158
  issue: 3
  year: 2011
  ident: 10.1016/j.resourpol.2018.11.004_bib33
  article-title: Two-stage clustering algorithm for block aggregation in open pit mines
  publication-title: Min. Technol.
  doi: 10.1179/1743286311Y.0000000009
– start-page: 577
  year: 2016
  ident: 10.1016/j.resourpol.2018.11.004_bib23
  article-title: Joint Conditional Simulation of an Iron Ore Deposit Using Minimum or Maximum Autocorrelation Factor Transformation
– start-page: 385
  year: 2007
  ident: 10.1016/j.resourpol.2018.11.004_bib28
  article-title: Stochastic optimisation of long-term production scheduling for open pit mines with a new integer programming formulation. orebody modelling and strategic mine planning
  publication-title: Australas. Inst. Min. Metall., Melb.
– ident: 10.1016/j.resourpol.2018.11.004_bib13
– year: 2014
  ident: 10.1016/j.resourpol.2018.11.004_bib16
– volume: 93
  start-page: 53
  issue: 1038
  year: 2000
  ident: 10.1016/j.resourpol.2018.11.004_bib37
  article-title: Mineral resource+ engineering, economic and legal feasibility
  publication-title: CIM Bull.
– volume: 32
  start-page: 919
  issue: 8
  year: 2000
  ident: 10.1016/j.resourpol.2018.11.004_bib10
  article-title: Geostatistical simulation of regionalized pore-size distributions using min/max autocorrelation factors
  publication-title: Math. Geol.
  doi: 10.1023/A:1007570402430
– volume: 27
  start-page: 349
  issue: 2–3
  year: 2003
  ident: 10.1016/j.resourpol.2018.11.004_bib7
  article-title: An application of branch and cut to open pit mine scheduling
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1024835022186
– ident: 10.1016/j.resourpol.2018.11.004_bib34
– volume: 44
  start-page: 449
  issue: 4
  year: 2012
  ident: 10.1016/j.resourpol.2018.11.004_bib6
  article-title: Multivariate block-support simulation of the Yandi iron ore deposit, Western Australia
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-012-9402-9
– volume: 14
  start-page: 361
  issue: 2
  year: 2013
  ident: 10.1016/j.resourpol.2018.11.004_bib29
  article-title: Production scheduling with uncertain supply: a new solution to the open pit mining problem
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-012-9186-2
– volume: 121
  start-page: 20
  issue: 1
  year: 2012
  ident: 10.1016/j.resourpol.2018.11.004_bib18
  article-title: Robust, flexible and operational mine design strategies
  publication-title: Min. Technol.
  doi: 10.1179/1743286311Y.0000000018
– volume: 116
  start-page: 109
  issue: 3
  year: 2007
  ident: 10.1016/j.resourpol.2018.11.004_bib21
  article-title: Stochastic optimisation model for open pit mine planning: application and risk analysis at copper deposit
  publication-title: Min. Technol.
  doi: 10.1179/174328607X228848
SSID ssj0005786
Score 2.3896248
Snippet Stochastic integer programming (SIP) has recently been studied to manage the risk caused by geological uncertainty when solving mine planning and production...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 571
SubjectTerms Aggregate data
Algorithms
Case studies
Computer simulation
Datasets
Integer programming
Integers
Iron and steel making
Iron compounds
Iron ore production scheduling
Iron ores
Large-scale optimisation
Mathematical programming
Mineral deposits
Mining
Mining industry
Open pit mining
Optimization
Ores
Present value
Production
Production scheduling
Risk
Risk management
Stochastic integer programming
TopCone algorithm
Uncertainty
Variables
Title A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming
URI https://dx.doi.org/10.1016/j.resourpol.2018.11.004
https://www.proquest.com/docview/2257677155
Volume 62
WOSCitedRecordID wos000474330600050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7641
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005786
  issn: 0301-4207
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqjgMcEAwmNgbygVuVKXWT2OFWoSJAqCBRpN6i-CPA1iVVklb7Y_hjeY7tuB2gsgOXqHJiK-775X35fSD0SsIXVihJAkWE0t4qFeQF5QHXZ1ZhQgoSm2YTdD5ny2X6eTD46XJhtitaluzmJl3_V1LDGBBbp87egdz9ojAAv4HocAWyw_WfCD_VXcK7kPFAiyg5qoArXNuoHdsxug8u1Eluo6rW2VJd5Vf9CNi7IH-6NPVNY9wNlfie64LOprqEql1Y17UTfK7Etz0MaLrmD2InwrgLGph_q8To48YDcgEm-8qw4ys_Oqtbwww_XbU-xudLpX3sW527uA9K67PQaVLM-SxsrlYIlisx_W4dH7Zc2TDS2DRmsTI5Ng1nfmP3xvNweVF3u4Od6Vg9dqHLspqmxvsFtm8Jvj4c0UW6XWb9QpleCMyjrCs2e0RonLIhOpq-ny0_-BAiysxZuN3NXvzgH9_pb9rPLT2gU24Wj9BDa5XgqUHTYzRQ5TF6sFOr8hidzHxKJDxqZULzBK2nGACHPeDwLuCwARwGwGEAHNZLYAAc9oDDHnC4Axz2gMMWcHgHcE_R17ezxZt3ge3jEQgQXy2wAZkQRSlXciILzoEhTHI14ZxLpvgkH4d8DJoq3GIiVExEkS7zL2jOYx4XIJJO0LCsSvUMYS4JpylY1Xkqo2Q8zgkJRRKBpsdiGVFxihL3_2bCFrnXvVZW2QEan6Kwn7g2dV4OT3ntCJhZddWooRnA8_Dkc0fyzDKPJiPa-qcUVPyzu7_Oc3Tff2rnaNjWG_UC3RPb9kdTv7TQ_QUIhM9w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+risk-based+optimisation+method+for+the+iron+ore+production+scheduling+using+stochastic+integer+programming&rft.jtitle=Resources+policy&rft.au=Mai%2C+Ngoc+Luan&rft.au=Topal%2C+Erkan&rft.au=Erten%2C+Oktay&rft.au=Sommerville%2C+Bruce&rft.date=2019-08-01&rft.issn=0301-4207&rft.volume=62&rft.spage=571&rft.epage=579&rft_id=info:doi/10.1016%2Fj.resourpol.2018.11.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_resourpol_2018_11_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4207&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4207&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4207&client=summon