Discovering and characterizing dynamic functional brain networks in task FMRI
Many existing studies for the mapping of function brain networks impose an implicit assumption that the networks’ spatial distributions are constant over time. However, the latest research reports reveal that functional brain networks are dynamical and have time-varying spatial patterns. Furthermore...
Saved in:
| Published in: | Brain imaging and behavior Vol. 14; no. 5; pp. 1660 - 1673 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.10.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1931-7557, 1931-7565, 1931-7565 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Many existing studies for the mapping of function brain networks impose an implicit assumption that the networks’ spatial distributions are constant over time. However, the latest research reports reveal that functional brain networks are dynamical and have time-varying spatial patterns. Furthermore, how these functional networks evolve over time has not been elaborated and explained in sufficient details yet. In this paper, we aim to discover and characterize the dynamics of functional brain networks via a windowed group-wise dictionary learning and sparse coding approach. First, we aggregated the sampled subjects’ fMRI signals into one big data matrix, and learned a common dictionary for all individuals via a group-wise dictionary learning step. Second, we obtained the dynamic time-varying functional networks by using the windowed time-varying sparse coding approach. Experimental results demonstrated that our windowed group-wise dictionary learning and sparse coding method can effectively detect the task-evoked networks and also characterize how these networks evolve over time. This work sheds novel insights on the dynamics mechanism of functional brain networks. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1931-7557 1931-7565 1931-7565 |
| DOI: | 10.1007/s11682-019-00096-6 |