Machine learning-based classification models for non-covalent Bruton’s tyrosine kinase inhibitors: predictive ability and interpretability
In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton’s tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors...
Saved in:
| Published in: | Molecular diversity Vol. 28; no. 4; pp. 2429 - 2447 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.08.2024
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1381-1991, 1573-501X, 1573-501X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton’s tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors from the Reaxys and ChEMBL databases, removing compounds with covalent bonds and duplicates to obtain a dataset of 3895 inhibitors of non-covalent. These inhibitors were characterized using MACCS fingerprints and Morgan fingerprints, and four traditional machine learning algorithms (decision trees (DT), random forests (RF), support vector machines (SVM), and extreme gradient boosting (XGBoost)) were used to build 16 classification models. In addition, four deep learning models were developed using deep neural networks (DNN). The best model, Model D_4, which was built using XGBoost and MACCS fingerprints, achieved an accuracy of 94.1% and a Matthews correlation coefficient (MCC) of 0.75 on the test set. To provide interpretable explanations, we employed the SHAP method to decompose the predicted values into the contributions of each feature. We also used K-means dimensionality reduction and hierarchical clustering to visualize the clustering effects of molecular structures of the inhibitors. The results of this study were validated using crystal structures, and we found that the interaction between the BTK amino acid residue and the important features of clustered scaffold was consistent with the known properties of the complex crystal structures. Overall, our models demonstrated high predictive ability and a qualitative model can be converted to a quantitative model to some extent by SHAP, making them valuable for guiding the design of new BTK inhibitors with desired activity. |
|---|---|
| AbstractList | In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton's tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors from the Reaxys and ChEMBL databases, removing compounds with covalent bonds and duplicates to obtain a dataset of 3895 inhibitors of non-covalent. These inhibitors were characterized using MACCS fingerprints and Morgan fingerprints, and four traditional machine learning algorithms (decision trees (DT), random forests (RF), support vector machines (SVM), and extreme gradient boosting (XGBoost)) were used to build 16 classification models. In addition, four deep learning models were developed using deep neural networks (DNN). The best model, Model D_4, which was built using XGBoost and MACCS fingerprints, achieved an accuracy of 94.1% and a Matthews correlation coefficient (MCC) of 0.75 on the test set. To provide interpretable explanations, we employed the SHAP method to decompose the predicted values into the contributions of each feature. We also used K-means dimensionality reduction and hierarchical clustering to visualize the clustering effects of molecular structures of the inhibitors. The results of this study were validated using crystal structures, and we found that the interaction between the BTK amino acid residue and the important features of clustered scaffold was consistent with the known properties of the complex crystal structures. Overall, our models demonstrated high predictive ability and a qualitative model can be converted to a quantitative model to some extent by SHAP, making them valuable for guiding the design of new BTK inhibitors with desired activity. In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton's tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors from the Reaxys and ChEMBL databases, removing compounds with covalent bonds and duplicates to obtain a dataset of 3895 inhibitors of non-covalent. These inhibitors were characterized using MACCS fingerprints and Morgan fingerprints, and four traditional machine learning algorithms (decision trees (DT), random forests (RF), support vector machines (SVM), and extreme gradient boosting (XGBoost)) were used to build 16 classification models. In addition, four deep learning models were developed using deep neural networks (DNN). The best model, Model D_4, which was built using XGBoost and MACCS fingerprints, achieved an accuracy of 94.1% and a Matthews correlation coefficient (MCC) of 0.75 on the test set. To provide interpretable explanations, we employed the SHAP method to decompose the predicted values into the contributions of each feature. We also used K-means dimensionality reduction and hierarchical clustering to visualize the clustering effects of molecular structures of the inhibitors. The results of this study were validated using crystal structures, and we found that the interaction between the BTK amino acid residue and the important features of clustered scaffold was consistent with the known properties of the complex crystal structures. Overall, our models demonstrated high predictive ability and a qualitative model can be converted to a quantitative model to some extent by SHAP, making them valuable for guiding the design of new BTK inhibitors with desired activity.In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton's tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors from the Reaxys and ChEMBL databases, removing compounds with covalent bonds and duplicates to obtain a dataset of 3895 inhibitors of non-covalent. These inhibitors were characterized using MACCS fingerprints and Morgan fingerprints, and four traditional machine learning algorithms (decision trees (DT), random forests (RF), support vector machines (SVM), and extreme gradient boosting (XGBoost)) were used to build 16 classification models. In addition, four deep learning models were developed using deep neural networks (DNN). The best model, Model D_4, which was built using XGBoost and MACCS fingerprints, achieved an accuracy of 94.1% and a Matthews correlation coefficient (MCC) of 0.75 on the test set. To provide interpretable explanations, we employed the SHAP method to decompose the predicted values into the contributions of each feature. We also used K-means dimensionality reduction and hierarchical clustering to visualize the clustering effects of molecular structures of the inhibitors. The results of this study were validated using crystal structures, and we found that the interaction between the BTK amino acid residue and the important features of clustered scaffold was consistent with the known properties of the complex crystal structures. Overall, our models demonstrated high predictive ability and a qualitative model can be converted to a quantitative model to some extent by SHAP, making them valuable for guiding the design of new BTK inhibitors with desired activity. |
| Author | Li, Guo Tian, Yujia Yan, Aixia Pang, Xiaoyang Li, Jiaxuan Zhao, Yunyang |
| Author_xml | – sequence: 1 givenname: Guo surname: Li fullname: Li, Guo organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology – sequence: 2 givenname: Jiaxuan surname: Li fullname: Li, Jiaxuan organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology – sequence: 3 givenname: Yujia surname: Tian fullname: Tian, Yujia organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology – sequence: 4 givenname: Yunyang surname: Zhao fullname: Zhao, Yunyang organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology – sequence: 5 givenname: Xiaoyang surname: Pang fullname: Pang, Xiaoyang organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology – sequence: 6 givenname: Aixia surname: Yan fullname: Yan, Aixia email: yanax@buct.edu.cn organization: State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37479824$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1uVSEUhYlpY3_0BRwYEidOsPycA-c408afJm2caOKMcGDTUs-FK3Ca3JkP4Av4ej6JtPc2Jh10AmTzrZWdtY7QXkwREHrB6BtGqTopjFFBCeWCMCpHSeQTdMh6JUhP2fe99hYDI2wc2QE6KuWa0iZj4ik6EKpT48C7Q_T7wtirEAHPYHIM8ZJMpoDDdjalBB-sqSFFvEoO5oJ9yrgtQWy6MTPEit_npab499efgusmp3Lr9CPEZoFDvApTqCmXt3idwQVbww1gM4U51A020TWkQm5_dTd8hva9mQs8393H6NvHD19PP5PzL5_OTt-dEytUX4kTk5uUkLIffeeZdX6Aceo9OOsEM6MV1nLpLbiBKXBecQ6cj4NTpuOGj-IYvd76rnP6uUCpehWKhXk2EdJSNB86RjlrR0NfPUCv05Jj204LxriUnEvVqJc7aplW4PQ6h5XJG32fcwOGLWBbSCWD1zbUu2hrNmHWjOrbSvW2Ut0q1XeVatmk_IH03v1RkdiKSoPjJeT_az-i-gdX27gb |
| CitedBy_id | crossref_primary_10_1016_j_ymeth_2023_09_010 crossref_primary_10_1016_j_afres_2025_101291 crossref_primary_10_1186_s12888_025_06657_y crossref_primary_10_3390_molecules28207140 crossref_primary_10_3390_sci6040081 crossref_primary_10_1080_17460441_2025_2543802 |
| Cites_doi | 10.1021/acscombsci.0c00169 10.3390/molecules25010024 10.1016/j.jmgm.2019.08.009 10.1109/3477.623240 10.1158/2159-8290.CD-17-1409 10.1016/j.ailsci.2022.100039 10.1021/acs.jmedchem.0c00702 10.1007/s40265-023-01860-1 10.1007/s40265-020-01318-8 10.1111/bph.14099 10.1007/BF01533070 10.1073/pnas.1004594107 10.1016/j.bmc.2019.05.021 10.1021/acs.jmedchem.1c00926 10.1021/acs.jmedchem.6b00788 10.1158/1078-0432.CCR-20-3741 10.1039/D0MD00154F 10.1021/acs.jmedchem.1c01279 10.1038/nrc.2017.121 10.1038/s41419-022-04684-1 10.1111/cbdd.13656 10.1039/D0SC06122K 10.1182/blood.2022018674 10.1186/s13045-016-0250-9 10.1021/acs.jmedchem.7b01712 10.3390/genes11050492 10.1016/j.bmc.2021.116163 10.1002/hon.2667 10.1002/cpt.85 10.1021/acs.jmedchem.6b01088 10.1021/jm4017762 10.1016/j.bmcl.2020.127390 10.1021/ci100050t 10.1007/s40265-021-01482-5 10.1021/acsmedchemlett.5b00463 10.1145/2939672.2939778 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. M0S M1P M2P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s11030-023-10696-6 |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Physics |
| EISSN | 1573-501X |
| EndPage | 2447 |
| ExternalDocumentID | 37479824 10_1007_s11030_023_10696_6 |
| Genre | Journal Article |
| GroupedDBID | --- -4W -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40E 53G 5QI 5VS 67Z 6NX 7X7 88E 88I 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LK5 LLZTM M1P M2P M4Y M7R MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7U Z7V Z87 Z8O Z8P Z91 ZMTXR ZOVNA ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c375t-d3bdb736659f4f1cdf8e9b5fedcd31a9c3cc26fced817edf722e2298d7a42a293 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001034245200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1381-1991 1573-501X |
| IngestDate | Sun Nov 09 13:03:26 EST 2025 Wed Nov 05 04:10:51 EST 2025 Thu Apr 03 07:04:20 EDT 2025 Sat Nov 29 01:53:54 EST 2025 Tue Nov 18 21:29:39 EST 2025 Fri Feb 21 02:40:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Non-covalent Bruton’s tyrosine kinase (BTK) inhibitors Machine learning method SHAP Classification models Structure clustering |
| Language | English |
| License | 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-d3bdb736659f4f1cdf8e9b5fedcd31a9c3cc26fced817edf722e2298d7a42a293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 37479824 |
| PQID | 3112662267 |
| PQPubID | 54625 |
| PageCount | 19 |
| ParticipantIDs | proquest_miscellaneous_2841021410 proquest_journals_3112662267 pubmed_primary_37479824 crossref_citationtrail_10_1007_s11030_023_10696_6 crossref_primary_10_1007_s11030_023_10696_6 springer_journals_10_1007_s11030_023_10696_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 2024-08-00 2024-Aug 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
| PublicationTitle | Molecular diversity |
| PublicationTitleAbbrev | Mol Divers |
| PublicationTitleAlternate | Mol Divers |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Xing, Liang, Deng (CR24) 2020; 22 Voice, Tresadern, Twidale (CR13) 2021; 12 Zou, Zhu, Li (CR6) 2019; 37 Reiff, Mantel, Smith (CR16) 2018; 8 CR38 Liu, Guiadeen, Krikorian (CR45) 2020; 30 CR37 Wu, Zhang, Liu (CR5) 2016; 9 CR36 Hu, Wang, Sun (CR10) 2021; 27 CR35 CR34 Lundberg, Lee (CR39) 2017; 30 CR33 Li, Zuo, Tang (CR4) 2014; 57 CR31 Gomez, Ebata, Randeria (CR42) 2023 Márquez, Mora, Flores-Morales (CR23) 2020; 25 Thieme, Liu, Bruss (CR17) 2022; 13 Rogers, Hahn (CR32) 2010; 50 Van Drie, Weininger, Martin (CR30) 1989; 3 Hopkins, Bame, Bell (CR28) 2019; 27 Elemam, Hachim, Hannawi, Maghazachi (CR12) 2020; 11 Burger, Wiestner (CR3) 2018; 18 Kawahata, Asami, Kiyoi (CR18) 2021; 64 Tankiewicz-Kwedlo, Hermanowicz, Domaniewski (CR1) 2018; 175 Jackson, Widen, Harki, Brummond (CR14) 2017; 60 Ma, Bohnert, Otipoby (CR11) 2020; 63 van der Maaten, Hinton (CR41) 2008; 9 Honigberg, Smith, Sirisawad (CR2) 2010; 107 Sutanto, Konstantinidou, Dömling (CR29) 2020; 11 CR27 CR26 Wang, Zhang, Champlin, Wang (CR9) 2015; 97 CR25 Qiu, Ali, Bender (CR47) 2021; 40 Dhillon (CR7) 2020; 80 Ma, Wang, Chu, Yan (CR22) 2019; 92 Yang, Tian, Kong (CR20) 2022; 2 Watterson, De Lucca, Shi (CR43) 2016; 59 Liu, Guiadeen, Krikorian (CR44) 2016; 7 Chaudhuri, Chaudhuri (CR40) 1997; 27 Crawford, Johnson, Misner (CR15) 2018; 61 Hopkins, Bame, Bajrami (CR46) 2022; 65 Dhillon (CR8) 2021; 81 Keam (CR19) 2023; 83 Wang, Ran, Chen, Lu (CR21) 2020; 96 J Wang (10696_CR21) 2020; 96 EB Gomez (10696_CR42) 2023 NM Elemam (10696_CR12) 2020; 11 A Tankiewicz-Kwedlo (10696_CR1) 2018; 175 W Kawahata (10696_CR18) 2021; 64 Y-X Zou (10696_CR6) 2019; 37 H Qiu (10696_CR47) 2021; 40 JH Van Drie (10696_CR30) 1989; 3 J Liu (10696_CR44) 2016; 7 N Hu (10696_CR10) 2021; 27 PA Jackson (10696_CR14) 2017; 60 SJ Keam (10696_CR19) 2023; 83 W Ma (10696_CR22) 2019; 92 E Márquez (10696_CR23) 2020; 25 J Liu (10696_CR45) 2020; 30 10696_CR26 G Xing (10696_CR24) 2020; 22 10696_CR27 X Li (10696_CR4) 2014; 57 10696_CR25 AT Voice (10696_CR13) 2021; 12 JJ Crawford (10696_CR15) 2018; 61 LA Honigberg (10696_CR2) 2010; 107 JA Burger (10696_CR3) 2018; 18 LJP van der Maaten (10696_CR41) 2008; 9 SD Reiff (10696_CR16) 2018; 8 D Rogers (10696_CR32) 2010; 50 D Chaudhuri (10696_CR40) 1997; 27 B Ma (10696_CR11) 2020; 63 F Sutanto (10696_CR29) 2020; 11 S Dhillon (10696_CR8) 2021; 81 Z Yang (10696_CR20) 2022; 2 SM Lundberg (10696_CR39) 2017; 30 J Wu (10696_CR5) 2016; 9 BT Hopkins (10696_CR28) 2019; 27 10696_CR37 SH Watterson (10696_CR43) 2016; 59 10696_CR38 10696_CR35 BT Hopkins (10696_CR46) 2022; 65 10696_CR36 S Dhillon (10696_CR7) 2020; 80 Y Wang (10696_CR9) 2015; 97 10696_CR33 10696_CR34 10696_CR31 E Thieme (10696_CR17) 2022; 13 |
| References_xml | – volume: 22 start-page: 873 year: 2020 end-page: 886 ident: CR24 article-title: Activity Prediction of small molecule inhibitors for antirheumatoid arthritis targets based on artificial intelligence publication-title: ACS Comb Sci doi: 10.1021/acscombsci.0c00169 – volume: 25 start-page: 24 year: 2020 ident: CR23 article-title: Modeling the Antileukemia activity of ellipticine-related compounds: QSAR and molecular docking study publication-title: Molecules doi: 10.3390/molecules25010024 – ident: CR37 – volume: 92 start-page: 357 year: 2019 end-page: 362 ident: CR22 article-title: 4D-QSAR and MIA-QSAR study on the Bruton’s tyrosine kinase (Btk) inhibitors publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2019.08.009 – volume: 30 start-page: 4768 year: 2017 end-page: 4777 ident: CR39 article-title: A unified approach to interpreting model predictions publication-title: Adv Neural Inf Process Syst – volume: 27 start-page: 871 year: 1997 end-page: 876 ident: CR40 article-title: A novel multiseed nonhierarchical data clustering technique publication-title: IEEE Trans on Syst, Man, Cybern Part B (Cybernetics) doi: 10.1109/3477.623240 – volume: 8 start-page: 1300 year: 2018 end-page: 1315 ident: CR16 article-title: The BTK inhibitor ARQ 531 targets ibrutinib-resistant CLL and richter transformation publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-17-1409 – volume: 2 start-page: 100039 year: 2022 ident: CR20 article-title: Classification of JAK1 inhibitors and SAR research by machine learning methods publication-title: Artif Intell Life Sci doi: 10.1016/j.ailsci.2022.100039 – ident: CR33 – volume: 63 start-page: 12526 year: 2020 end-page: 12541 ident: CR11 article-title: Discovery of BIIB068: a selective, potent, reversible Bruton’s tyrosine kinase inhibitor as an orally efficacious agent for autoimmune diseases publication-title: J Med Chem doi: 10.1021/acs.jmedchem.0c00702 – volume: 83 start-page: 547 year: 2023 end-page: 553 ident: CR19 article-title: Pirtobrutinib: first approval publication-title: Drugs doi: 10.1007/s40265-023-01860-1 – ident: CR35 – volume: 80 start-page: 835 year: 2020 end-page: 840 ident: CR7 article-title: Tirabrutinib: first approval publication-title: Drugs doi: 10.1007/s40265-020-01318-8 – volume: 175 start-page: 743 year: 2018 end-page: 762 ident: CR1 article-title: Simultaneous use of erythropoietin and LFM-A13 as a new therapeutic approach for colorectal cancer publication-title: Br J Pharmacol doi: 10.1111/bph.14099 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR41 article-title: Visualizing high-dimensional data using t-SNE publication-title: J Mach Learn Res – ident: CR25 – ident: CR27 – volume: 3 start-page: 225 year: 1989 end-page: 251 ident: CR30 article-title: ALADDIN: an integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of three-dimensional molecular structures publication-title: J Comput-Aided Mol Des doi: 10.1007/BF01533070 – volume: 107 start-page: 13075 year: 2010 end-page: 13080 ident: CR2 article-title: The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1004594107 – volume: 27 start-page: 2905 year: 2019 end-page: 2913 ident: CR28 article-title: Optimization of novel reversible Bruton’s tyrosine kinase inhibitors identified using tethering-fragment-based screens publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2019.05.021 – volume: 65 start-page: 1206 year: 2022 end-page: 1224 ident: CR46 article-title: Discovery and preclinical characterization of BIIB091, a reversible, selective BTK inhibitor for the treatment of multiple sclerosis publication-title: J Med Chem doi: 10.1021/acs.jmedchem.1c00926 – ident: CR38 – volume: 60 start-page: 839 year: 2017 end-page: 885 ident: CR14 article-title: Covalent modifiers: a chemical perspective on the reactivity of α, β-unsaturated carbonyls with thiols via hetero-michael addition reactions publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b00788 – volume: 27 start-page: 2301 year: 2021 end-page: 2313 ident: CR10 article-title: Follicular lymphoma–associated BTK mutations are inactivating resulting in augmented AKT activation publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-20-3741 – volume: 11 start-page: 876 year: 2020 end-page: 884 ident: CR29 article-title: Covalent inhibitors: a rational approach to drug discovery publication-title: RSC Med Chem doi: 10.1039/D0MD00154F – volume: 64 start-page: 14129 year: 2021 end-page: 14141 ident: CR18 article-title: Discovery of AS-1763: a potent, selective, noncovalent, and orally available inhibitor of Bruton’s Tyrosine Kinase publication-title: J Med Chem doi: 10.1021/acs.jmedchem.1c01279 – ident: CR31 – volume: 18 start-page: 148 year: 2018 end-page: 167 ident: CR3 article-title: Targeting B cell receptor signalling in cancer: preclinical and clinical advances publication-title: Nat Rev Cancer doi: 10.1038/nrc.2017.121 – volume: 13 start-page: 1 year: 2022 end-page: 11 ident: CR17 article-title: Dual BTK/SYK inhibition with CG-806 (luxeptinib) disrupts B-cell receptor and Bcl-2 signaling networks in mantle cell lymphoma publication-title: Cell Death Dis doi: 10.1038/s41419-022-04684-1 – volume: 96 start-page: 1114 year: 2020 end-page: 1122 ident: CR21 article-title: Bayesian machine learning to discover Bruton’s tyrosine kinase inhibitors publication-title: Chem Biol Drug Des doi: 10.1111/cbdd.13656 – volume: 12 start-page: 5511 year: 2021 end-page: 5516 ident: CR13 article-title: Mechanism of covalent binding of ibrutinib to Bruton’s tyrosine kinase revealed by QM/MM calculations publication-title: Chem Sci doi: 10.1039/D0SC06122K – year: 2023 ident: CR42 article-title: Pirtobrutinib preclinical characterization: a highly selective, non-covalent (reversible) BTK inhibitor publication-title: Blood doi: 10.1182/blood.2022018674 – volume: 9 start-page: 21 year: 2016 ident: CR5 article-title: Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor publication-title: J Hematol Oncol doi: 10.1186/s13045-016-0250-9 – volume: 61 start-page: 2227 year: 2018 end-page: 2245 ident: CR15 article-title: Discovery of GDC-0853: a potent, selective, and noncovalent Bruton’s tyrosine kinase inhibitor in early clinical development publication-title: J Med Chem doi: 10.1021/acs.jmedchem.7b01712 – ident: CR34 – ident: CR36 – volume: 11 start-page: 492 year: 2020 ident: CR12 article-title: Differentially expressed genes of natural killer cells can distinguish rheumatoid arthritis patients from healthy controls publication-title: Genes doi: 10.3390/genes11050492 – volume: 40 start-page: 116163 year: 2021 ident: CR47 article-title: Discovery of potent and selective reversible Bruton’s tyrosine kinase inhibitors publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2021.116163 – volume: 37 start-page: 392 year: 2019 end-page: 400 ident: CR6 article-title: The impacts of zanubrutinib on immune cells in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma publication-title: Hematol Oncol doi: 10.1002/hon.2667 – volume: 97 start-page: 455 year: 2015 end-page: 468 ident: CR9 article-title: Targeting Bruton’s tyrosine kinase with ibrutinib in B-cell malignancies publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.85 – volume: 59 start-page: 9173 year: 2016 end-page: 9200 ident: CR43 article-title: Discovery of 6-fluoro-5-(R)-(3-(S)-(8-fluoro-1-methyl-2,4-dioxo-1,2-dihydroquinazolin-3(4H)-yl)-2-methylphenyl)-2-(S)-(2-hydroxypropan-2-yl)-2,3,4,9-tetrahydro-1H-carbazole-8-carboxamide (BMS-986142): a reversible inhibitor of Bruton’s Tyrosine Kinase (BTK) conformationally constrained by two locked atropisomers publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b01088 – volume: 57 start-page: 5112 year: 2014 end-page: 5128 ident: CR4 article-title: Discovery of a series of 2,5-diaminopyrimidine covalent irreversible inhibitors of Bruton’s tyrosine kinase with in vivo antitumor activity publication-title: J Med Chem doi: 10.1021/jm4017762 – volume: 30 start-page: 127390 year: 2020 ident: CR45 article-title: Potent, non-covalent reversible BTK inhibitors with 8-amino-imidazo[1,5-a]pyrazine core featuring 3-position bicyclic ring substitutes publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2020.127390 – ident: CR26 – volume: 50 start-page: 742 year: 2010 end-page: 754 ident: CR32 article-title: Extended-connectivity fingerprints publication-title: J Chem Inf Model doi: 10.1021/ci100050t – volume: 81 start-page: 503 year: 2021 end-page: 507 ident: CR8 article-title: Orelabrutinib: first approval publication-title: Drugs doi: 10.1007/s40265-021-01482-5 – volume: 7 start-page: 198 year: 2016 end-page: 203 ident: CR44 article-title: Discovery of 8-amino-imidazo[1,5- ]pyrazines as reversible BTK Inhibitors for the treatment of rheumatoid arthritis publication-title: ACS Med Chem Lett doi: 10.1021/acsmedchemlett.5b00463 – volume: 27 start-page: 2301 year: 2021 ident: 10696_CR10 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-20-3741 – volume: 8 start-page: 1300 year: 2018 ident: 10696_CR16 publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-17-1409 – volume: 9 start-page: 2579 year: 2008 ident: 10696_CR41 publication-title: J Mach Learn Res – volume: 2 start-page: 100039 year: 2022 ident: 10696_CR20 publication-title: Artif Intell Life Sci doi: 10.1016/j.ailsci.2022.100039 – volume: 40 start-page: 116163 year: 2021 ident: 10696_CR47 publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2021.116163 – volume: 80 start-page: 835 year: 2020 ident: 10696_CR7 publication-title: Drugs doi: 10.1007/s40265-020-01318-8 – volume: 7 start-page: 198 year: 2016 ident: 10696_CR44 publication-title: ACS Med Chem Lett doi: 10.1021/acsmedchemlett.5b00463 – volume: 61 start-page: 2227 year: 2018 ident: 10696_CR15 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.7b01712 – volume: 64 start-page: 14129 year: 2021 ident: 10696_CR18 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.1c01279 – volume: 83 start-page: 547 year: 2023 ident: 10696_CR19 publication-title: Drugs doi: 10.1007/s40265-023-01860-1 – volume: 57 start-page: 5112 year: 2014 ident: 10696_CR4 publication-title: J Med Chem doi: 10.1021/jm4017762 – ident: 10696_CR26 – volume: 30 start-page: 127390 year: 2020 ident: 10696_CR45 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2020.127390 – volume: 18 start-page: 148 year: 2018 ident: 10696_CR3 publication-title: Nat Rev Cancer doi: 10.1038/nrc.2017.121 – volume: 37 start-page: 392 year: 2019 ident: 10696_CR6 publication-title: Hematol Oncol doi: 10.1002/hon.2667 – ident: 10696_CR38 doi: 10.1145/2939672.2939778 – volume: 22 start-page: 873 year: 2020 ident: 10696_CR24 publication-title: ACS Comb Sci doi: 10.1021/acscombsci.0c00169 – ident: 10696_CR36 – volume: 81 start-page: 503 year: 2021 ident: 10696_CR8 publication-title: Drugs doi: 10.1007/s40265-021-01482-5 – volume: 27 start-page: 2905 year: 2019 ident: 10696_CR28 publication-title: Bioorg Med Chem doi: 10.1016/j.bmc.2019.05.021 – ident: 10696_CR34 – ident: 10696_CR37 – volume: 3 start-page: 225 year: 1989 ident: 10696_CR30 publication-title: J Comput-Aided Mol Des doi: 10.1007/BF01533070 – volume: 11 start-page: 876 year: 2020 ident: 10696_CR29 publication-title: RSC Med Chem doi: 10.1039/D0MD00154F – volume: 107 start-page: 13075 year: 2010 ident: 10696_CR2 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1004594107 – volume: 27 start-page: 871 year: 1997 ident: 10696_CR40 publication-title: IEEE Trans on Syst, Man, Cybern Part B (Cybernetics) doi: 10.1109/3477.623240 – volume: 175 start-page: 743 year: 2018 ident: 10696_CR1 publication-title: Br J Pharmacol doi: 10.1111/bph.14099 – volume: 97 start-page: 455 year: 2015 ident: 10696_CR9 publication-title: Clin Pharmacol Ther doi: 10.1002/cpt.85 – volume: 25 start-page: 24 year: 2020 ident: 10696_CR23 publication-title: Molecules doi: 10.3390/molecules25010024 – ident: 10696_CR27 – volume: 63 start-page: 12526 year: 2020 ident: 10696_CR11 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.0c00702 – ident: 10696_CR25 – volume: 96 start-page: 1114 year: 2020 ident: 10696_CR21 publication-title: Chem Biol Drug Des doi: 10.1111/cbdd.13656 – volume: 59 start-page: 9173 year: 2016 ident: 10696_CR43 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b01088 – volume: 11 start-page: 492 year: 2020 ident: 10696_CR12 publication-title: Genes doi: 10.3390/genes11050492 – volume: 50 start-page: 742 year: 2010 ident: 10696_CR32 publication-title: J Chem Inf Model doi: 10.1021/ci100050t – volume: 30 start-page: 4768 year: 2017 ident: 10696_CR39 publication-title: Adv Neural Inf Process Syst – volume: 13 start-page: 1 year: 2022 ident: 10696_CR17 publication-title: Cell Death Dis doi: 10.1038/s41419-022-04684-1 – volume: 92 start-page: 357 year: 2019 ident: 10696_CR22 publication-title: J Mol Graph Model doi: 10.1016/j.jmgm.2019.08.009 – volume: 9 start-page: 21 year: 2016 ident: 10696_CR5 publication-title: J Hematol Oncol doi: 10.1186/s13045-016-0250-9 – ident: 10696_CR31 – year: 2023 ident: 10696_CR42 publication-title: Blood doi: 10.1182/blood.2022018674 – volume: 60 start-page: 839 year: 2017 ident: 10696_CR14 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b00788 – volume: 12 start-page: 5511 year: 2021 ident: 10696_CR13 publication-title: Chem Sci doi: 10.1039/D0SC06122K – ident: 10696_CR33 – ident: 10696_CR35 – volume: 65 start-page: 1206 year: 2022 ident: 10696_CR46 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.1c00926 |
| SSID | ssj0010013 |
| Score | 2.399703 |
| Snippet | In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton’s tyrosine... In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton's tyrosine... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2429 |
| SubjectTerms | Accuracy Agammaglobulinaemia Tyrosine Kinase - antagonists & inhibitors Agammaglobulinaemia Tyrosine Kinase - chemistry Algorithms Autoimmune diseases Binding sites Biochemistry Biological activity Biomedical and Life Sciences Chemical bonds Classification Clustering Datasets Decision trees Deep learning FDA approval Humans Life Sciences Lymphoma Machine Learning Neural networks Neural Networks, Computer Organic Chemistry Original Article Pharmacy Polymer Sciences Protein Kinase Inhibitors - chemistry Protein Kinase Inhibitors - pharmacology Signal transduction Support Vector Machine Support vector machines Tyrosine Kinase Inhibitors |
| Title | Machine learning-based classification models for non-covalent Bruton’s tyrosine kinase inhibitors: predictive ability and interpretability |
| URI | https://link.springer.com/article/10.1007/s11030-023-10696-6 https://www.ncbi.nlm.nih.gov/pubmed/37479824 https://www.proquest.com/docview/3112662267 https://www.proquest.com/docview/2841021410 |
| Volume | 28 |
| WOSCitedRecordID | wos001034245200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary (1997 - Present) customDbUrl: eissn: 1573-501X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010013 issn: 1381-1991 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2iLUjdUJ4ltIyMxA4sxXFix-xa1IoFHY3KQ7OLHNspEShTTaZIs-MD-AF-jy_h2nmMUAEJNlEejuPY177Huo8D8Kz0xiqWZhS3XY6mAsW4jIWlXDAdx1VsRBco_EZOp_l8rmZ9UFg7eLsPJsmwUm-C3TwjFkUdg0uHUIKKLdhBdZd7wobztx9G24FHNWGblTPvRsH6UJnf1_GrOrqGMa_ZR4PaOd37vwbfgds9zCRHnVzchRuuuQe3OuLJNZ4Fx0_T3odvZ8Gb0pGePuKCer1mifGo2rsRhZEjgTCnJYhwSbNoqFmggKK6IigaCB5_fP3ektUa_9DX9KlusApSNx_rsvZkPi_J5dLbg_zKSrq84GuiG0vq0eOxu_kA3p-evHv1mvYMDdRwma2o5aUtJRciU1VaMWOr3Kkyq5w1ljOtDDcmEZVxNmfS2UomiUsSlVup00Qj0ngI29hq9wiI8bngFOPMVAgylMelPHUqy7XSTHMdARsGqjB9-nLPovG52CRe9v1dYH8Xob8LEcHz8Z3LLnnHX0sfDuNf9BO5LbgPsRKIUWUET8fHOAW9XUU3bnHVFqjhA0E6iyPY7-Rm_BzH7ZrKkzSCF4OQbCr_c1se_1vxA9hNEGx1jomHsL1aXrkncNN8WdXtcgJbci7DMZ_AzvHJdHaOV2fJbBImzk-9gw8T |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFLWqAqIb3o-BAkaCFVgd2xPPGAkhBFStmkZdFKm7wWN7YFQ0CZkUlB0fwA_wE3wUX8K9nkeEKrrrgl2Uh2M5x_eem_s4hDwpMFnFkxGDsMuzRAGMi1g5JhU3cVzGVrWNwuN0MsmOjvTBGvnV98JgWWVvE4OhdlOL_5FvSex1UUAW0lezLwxVozC72ktotLDY88tvELI1L3ffwu_7VIjtd4dvdlinKsCsTEcL5mThilQqNdJlUnLryszrYlR6Z53kRltprVCl9S7jqXdlKoQXQmcuNYkwAocvgcm_kOBkMSwVFAdD1gL5VAjwMo4FHLxr0mlb9VDPi4GHBMOntGLqb0d4it2eyswGh7d99X87qmvkSket6ev2Llwna76-QS61YptLeBSKXW1zk_zYDxWknnaSGR8Z-nJHLUYSWDoV0EqDSFBDgdXTelozO4VLCS6awnUAwvz7-8-GLpZwtrjScVXDErSqP1VFhQJGL-hsjjkw9Ca0nYW-pKZ2tBqqPNsnb5H353Iot8k67NrfJdTi_DvNJbclECuNXFwmXo8yow030kSE9xDJbTeyHZVDPuerYdMIqxxglQdY5Soiz4bPzNqBJWe-e7OHUN4ZryZf4Scij4eXwexgLsnUfnrS5MBqgig8jyNyp0Xs8HUSQlSdiSQiz3sIrxb_917unb2XR-TyzuH-OB_vTvbukw0B5LItxNwk64v5iX9ALtqvi6qZPwyXkpIP5w3tP9lsdYw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL2qUkBseD8CBYwEK7Aa2zOeMRJCQBtRtUQRAqm7Ycb2wAg0CZkUlB0fwA_wK3wOX8K984pQRXddsIvycCzn-N5zcx8H4EFGySoRhBzDLs8DjTDORtpxpUU6GuUjq5tG4YNoMokPD810A351vTBUVtnZxNpQu5ml_8i3FfW6aCQL0XbelkVMd8bP5l84KUhRprWT02ggsu9X3zB8q57u7eBv_VDK8e7bl694qzDArYrCJXcqc1mktA5NHuTCujz2Jgtz76xTIjVWWSt1br2LReRdHknppTSxi9JAppIGMaH534yQZAQD2HyxO5m-6XMYxK7qcC8WVM4h2padpnGP1L04-ks0g9porv92i8e47rE8be3-xhf_54O7BBda0s2eN7fkMmz48gqcbWQ4V_ioLoO11VX48bquLfWsFdP4wMnLO2YpxqCiqhrHrJYPqhjyfVbOSm5neF3ReTO8KEilf3__WbHlCs-ZVvpUlLgEK8qPRVaQtNETNl9Qdoz8DGumpK9YWjpW9PWfzZPX4N2pHMp1GOCu_U1glibjGaGEzZFyGWLpKvAmjFOTilSlQxAdXBLbDnMnTZHPyXoMNUEsQYglNcQSPYRH_WfmzSiTE9-91cEpac1alayxNIT7_ctokCjLlJZ-dlQlyHdquXgxGsKNBr391ykMXk0sgyE87uC8Xvzfe7l18l7uwTlEdHKwN9m_Declss6mQnMLBsvFkb8DZ-zXZVEt7rY3lMH708b2H4M9f6Y |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+classification+models+for+non-covalent+Bruton%27s+tyrosine+kinase+inhibitors%3A+predictive+ability+and+interpretability&rft.jtitle=Molecular+diversity&rft.au=Li%2C+Guo&rft.au=Li%2C+Jiaxuan&rft.au=Tian%2C+Yujia&rft.au=Zhao%2C+Yunyang&rft.date=2024-08-01&rft.eissn=1573-501X&rft.volume=28&rft.issue=4&rft.spage=2429&rft_id=info:doi/10.1007%2Fs11030-023-10696-6&rft_id=info%3Apmid%2F37479824&rft.externalDocID=37479824 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-1991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-1991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-1991&client=summon |