When seeing is not believing: application-appropriate validation matters for quantitative bioimage analysis
A key step toward biologically interpretable analysis of microscopy image-based assays is rigorous quantitative validation with metrics appropriate for the particular application in use. Here we describe this challenge for both classical and modern deep learning-based image analysis approaches and d...
Gespeichert in:
| Veröffentlicht in: | Nature methods Jg. 20; H. 7; S. 968 - 970 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Nature Publishing Group US
01.07.2023
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 1548-7091, 1548-7105, 1548-7105 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A key step toward biologically interpretable analysis of microscopy image-based assays is rigorous quantitative validation with metrics appropriate for the particular application in use. Here we describe this challenge for both classical and modern deep learning-based image analysis approaches and discuss possible solutions for automating and streamlining the validation process in the next five to ten years. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1548-7091 1548-7105 1548-7105 |
| DOI: | 10.1038/s41592-023-01881-4 |