Identification of Non-Invasive Exercise Thresholds: Methods, Strategies, and an Online App

During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood lactate accumulation (the lactate threshold, LT) and the second the onset of metabolic acidosis (the respiratory compensation point, RCP). The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sports medicine (Auckland) Ročník 52; číslo 2; s. 237 - 255
Hlavní autoři: Keir, Daniel A., Iannetta, Danilo, Mattioni Maturana, Felipe, Kowalchuk, John M., Murias, Juan M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.02.2022
Springer Nature B.V
Témata:
ISSN:0112-1642, 1179-2035, 1179-2035
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood lactate accumulation (the lactate threshold, LT) and the second the onset of metabolic acidosis (the respiratory compensation point, RCP). The ability to explain why these thresholds occur and how they are identified, non-invasively, from pulmonary gas exchange and ventilatory variables is fundamental to the field of exercise physiology and requisite to the understanding of core concepts including exercise intensity, assessment, prescription, and performance. This review is intended as a unique and comprehensive theoretical and practical resource for instructors, clinicians, researchers, lab technicians, and students at both undergraduate and graduate levels to facilitate the teaching, comprehension, and proper non-invasive identification of exercise thresholds. Specific objectives are to: (1) explain the underlying physiology that produces the LT and RCP; (2) introduce the classic non-invasive measurements by which these thresholds are identified by connecting variable profiles to underlying physiological behaviour; (3) discuss common issues that can obscure threshold detection and strategies to identify and mitigate these challenges; and (4) introduce an online resource to facilitate learning and standard practices. Specific examples of exercise gas exchange and ventilatory data are provided throughout to illustrate these concepts and a novel online application tool designed specifically to identify the estimated LT ( θ LT ) and RCP is introduced. This application is a unique platform for learners to practice skills on real exercise data and for anyone to analyze incremental exercise data for the purpose of identifying θ LT and RCP.
AbstractList During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood lactate accumulation (the lactate threshold, LT) and the second the onset of metabolic acidosis (the respiratory compensation point, RCP). The ability to explain why these thresholds occur and how they are identified, non-invasively, from pulmonary gas exchange and ventilatory variables is fundamental to the field of exercise physiology and requisite to the understanding of core concepts including exercise intensity, assessment, prescription, and performance. This review is intended as a unique and comprehensive theoretical and practical resource for instructors, clinicians, researchers, lab technicians, and students at both undergraduate and graduate levels to facilitate the teaching, comprehension, and proper non-invasive identification of exercise thresholds. Specific objectives are to: (1) explain the underlying physiology that produces the LT and RCP; (2) introduce the classic non-invasive measurements by which these thresholds are identified by connecting variable profiles to underlying physiological behaviour; (3) discuss common issues that can obscure threshold detection and strategies to identify and mitigate these challenges; and (4) introduce an online resource to facilitate learning and standard practices. Specific examples of exercise gas exchange and ventilatory data are provided throughout to illustrate these concepts and a novel online application tool designed specifically to identify the estimated LT ( θ LT ) and RCP is introduced. This application is a unique platform for learners to practice skills on real exercise data and for anyone to analyze incremental exercise data for the purpose of identifying θ LT and RCP.
During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood lactate accumulation (the lactate threshold, LT) and the second the onset of metabolic acidosis (the respiratory compensation point, RCP). The ability to explain why these thresholds occur and how they are identified, non-invasively, from pulmonary gas exchange and ventilatory variables is fundamental to the field of exercise physiology and requisite to the understanding of core concepts including exercise intensity, assessment, prescription, and performance. This review is intended as a unique and comprehensive theoretical and practical resource for instructors, clinicians, researchers, lab technicians, and students at both undergraduate and graduate levels to facilitate the teaching, comprehension, and proper non-invasive identification of exercise thresholds. Specific objectives are to: (1) explain the underlying physiology that produces the LT and RCP; (2) introduce the classic non-invasive measurements by which these thresholds are identified by connecting variable profiles to underlying physiological behaviour; (3) discuss common issues that can obscure threshold detection and strategies to identify and mitigate these challenges; and (4) introduce an online resource to facilitate learning and standard practices. Specific examples of exercise gas exchange and ventilatory data are provided throughout to illustrate these concepts and a novel online application tool designed specifically to identify the estimated LT (θLT) and RCP is introduced. This application is a unique platform for learners to practice skills on real exercise data and for anyone to analyze incremental exercise data for the purpose of identifying θLT and RCP.
During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood lactate accumulation (the lactate threshold, LT) and the second the onset of metabolic acidosis (the respiratory compensation point, RCP). The ability to explain why these thresholds occur and how they are identified, non-invasively, from pulmonary gas exchange and ventilatory variables is fundamental to the field of exercise physiology and requisite to the understanding of core concepts including exercise intensity, assessment, prescription, and performance. This review is intended as a unique and comprehensive theoretical and practical resource for instructors, clinicians, researchers, lab technicians, and students at both undergraduate and graduate levels to facilitate the teaching, comprehension, and proper non-invasive identification of exercise thresholds. Specific objectives are to: (1) explain the underlying physiology that produces the LT and RCP; (2) introduce the classic non-invasive measurements by which these thresholds are identified by connecting variable profiles to underlying physiological behaviour; (3) discuss common issues that can obscure threshold detection and strategies to identify and mitigate these challenges; and (4) introduce an online resource to facilitate learning and standard practices. Specific examples of exercise gas exchange and ventilatory data are provided throughout to illustrate these concepts and a novel online application tool designed specifically to identify the estimated LT (θ ) and RCP is introduced. This application is a unique platform for learners to practice skills on real exercise data and for anyone to analyze incremental exercise data for the purpose of identifying θ and RCP.
During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood lactate accumulation (the lactate threshold, LT) and the second the onset of metabolic acidosis (the respiratory compensation point, RCP). The ability to explain why these thresholds occur and how they are identified, non-invasively, from pulmonary gas exchange and ventilatory variables is fundamental to the field of exercise physiology and requisite to the understanding of core concepts including exercise intensity, assessment, prescription, and performance. This review is intended as a unique and comprehensive theoretical and practical resource for instructors, clinicians, researchers, lab technicians, and students at both undergraduate and graduate levels to facilitate the teaching, comprehension, and proper non-invasive identification of exercise thresholds. Specific objectives are to: (1) explain the underlying physiology that produces the LT and RCP; (2) introduce the classic non-invasive measurements by which these thresholds are identified by connecting variable profiles to underlying physiological behaviour; (3) discuss common issues that can obscure threshold detection and strategies to identify and mitigate these challenges; and (4) introduce an online resource to facilitate learning and standard practices. Specific examples of exercise gas exchange and ventilatory data are provided throughout to illustrate these concepts and a novel online application tool designed specifically to identify the estimated LT (θLT) and RCP is introduced. This application is a unique platform for learners to practice skills on real exercise data and for anyone to analyze incremental exercise data for the purpose of identifying θLT and RCP.During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood lactate accumulation (the lactate threshold, LT) and the second the onset of metabolic acidosis (the respiratory compensation point, RCP). The ability to explain why these thresholds occur and how they are identified, non-invasively, from pulmonary gas exchange and ventilatory variables is fundamental to the field of exercise physiology and requisite to the understanding of core concepts including exercise intensity, assessment, prescription, and performance. This review is intended as a unique and comprehensive theoretical and practical resource for instructors, clinicians, researchers, lab technicians, and students at both undergraduate and graduate levels to facilitate the teaching, comprehension, and proper non-invasive identification of exercise thresholds. Specific objectives are to: (1) explain the underlying physiology that produces the LT and RCP; (2) introduce the classic non-invasive measurements by which these thresholds are identified by connecting variable profiles to underlying physiological behaviour; (3) discuss common issues that can obscure threshold detection and strategies to identify and mitigate these challenges; and (4) introduce an online resource to facilitate learning and standard practices. Specific examples of exercise gas exchange and ventilatory data are provided throughout to illustrate these concepts and a novel online application tool designed specifically to identify the estimated LT (θLT) and RCP is introduced. This application is a unique platform for learners to practice skills on real exercise data and for anyone to analyze incremental exercise data for the purpose of identifying θLT and RCP.
Author Kowalchuk, John M.
Murias, Juan M.
Mattioni Maturana, Felipe
Iannetta, Danilo
Keir, Daniel A.
Author_xml – sequence: 1
  givenname: Daniel A.
  orcidid: 0000-0002-5656-373X
  surname: Keir
  fullname: Keir, Daniel A.
  email: dkeir@uwo.ca
  organization: School of Kinesiology, The University of Western Ontario, Toronto General Research Institute, Toronto General Hospital
– sequence: 2
  givenname: Danilo
  surname: Iannetta
  fullname: Iannetta, Danilo
  organization: Faculty of Kinesiology, University of Calgary
– sequence: 3
  givenname: Felipe
  orcidid: 0000-0002-4221-6104
  surname: Mattioni Maturana
  fullname: Mattioni Maturana, Felipe
  organization: Department of Sports Medicine, University of Tübingen
– sequence: 4
  givenname: John M.
  surname: Kowalchuk
  fullname: Kowalchuk, John M.
  organization: School of Kinesiology, The University of Western Ontario, Department of Physiology and Pharmacology, The University of Western Ontario
– sequence: 5
  givenname: Juan M.
  orcidid: 0000-0002-6460-6453
  surname: Murias
  fullname: Murias, Juan M.
  organization: Faculty of Kinesiology, University of Calgary
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34694596$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtP3DAUha0KVAbaP8CiitQNCwLXN3YSd4cQ0JF4LKCbbixPcs0YZeypnUEtvx6X4SGxYOGHrO_Yx-dssw0fPDG2y-GAAzSHSQA2qgTkJXDZ8vLhE5twno8QKrnBJsA5lrwWuMW2U7oDANkK_My2KlErIVU9Yb-nPfnRWdeZ0QVfBFtcBl9O_b1J7p6Kk78UO5eouJlHSvMw9OlHcUHjPPRpv7geoxnp1lHeG9_nUVz5wXkqjpbLL2zTmiHR1-d1h_06Pbk5_lmeX51Nj4_Oy65q5FgabjtDlptZq4Sw2AjoUXFuqVaNqgypyrYSrbSAtVCtyp_L9k0zQ4C-q6odtre-dxnDnxWlUS9c6mgYjKewShplK1Wemjaj39-hd2EVfXansUYJIBCbTH17plazBfV6Gd3CxH_6JbUM4BroYkgpkn1FOOj_1eh1NTpXo5-q0Q9Z1L4TdW58Cj2H6IaPpdVamvI7_pbim-0PVI8v0aE_
CitedBy_id crossref_primary_10_3390_s23041973
crossref_primary_10_1080_02640414_2024_2382566
crossref_primary_10_1152_japplphysiol_00566_2022
crossref_primary_10_1007_s40279_024_02145_7
crossref_primary_10_1055_a_2328_3845
crossref_primary_10_1007_s00421_024_05622_z
crossref_primary_10_1007_s42978_025_00328_w
crossref_primary_10_1016_j_jesf_2024_05_003
crossref_primary_10_1152_japplphysiol_00283_2025
crossref_primary_10_1519_JSC_0000000000004650
crossref_primary_10_1038_s41598_025_00559_5
crossref_primary_10_1152_japplphysiol_00219_2024
crossref_primary_10_1249_MSS_0000000000003357
crossref_primary_10_3389_fspor_2022_1072154
crossref_primary_10_1139_apnm_2023_0593
crossref_primary_10_3390_app15020903
crossref_primary_10_1038_s41746_024_01191_9
crossref_primary_10_3390_sports11110212
crossref_primary_10_1113_JP287696
crossref_primary_10_3389_fnins_2024_1435716
crossref_primary_10_3389_fspor_2023_1115944
crossref_primary_10_5114_jhk_205427
crossref_primary_10_1007_s00421_024_05674_1
crossref_primary_10_1080_02640414_2023_2259206
crossref_primary_10_1016_j_jtherbio_2025_104256
crossref_primary_10_1080_02640414_2024_2388996
crossref_primary_10_1113_EP092908
crossref_primary_10_1016_j_cjca_2024_12_026
crossref_primary_10_52082_jssm_2022_545
crossref_primary_10_1111_sms_14490
crossref_primary_10_1007_s00421_023_05407_w
crossref_primary_10_1113_EP091753
crossref_primary_10_1113_EP092123
crossref_primary_10_1152_japplphysiol_00085_2024
crossref_primary_10_1016_j_cdnut_2024_104538
crossref_primary_10_1152_japplphysiol_00764_2021
crossref_primary_10_1007_s00421_024_05614_z
crossref_primary_10_1007_s00421_024_05444_z
crossref_primary_10_1139_apnm_2024_0060
crossref_primary_10_1080_02701367_2025_2482108
crossref_primary_10_1111_sms_70056
crossref_primary_10_1007_s40279_025_02272_9
crossref_primary_10_1152_japplphysiol_00589_2024
crossref_primary_10_33549_physiolres_935068
crossref_primary_10_1007_s00421_025_05716_2
crossref_primary_10_1249_MSS_0000000000003744
crossref_primary_10_1007_s00421_024_05542_y
crossref_primary_10_1016_j_exger_2022_111826
crossref_primary_10_1007_s40279_024_02084_3
crossref_primary_10_14814_phy2_70066
crossref_primary_10_1152_ajpregu_00016_2024
crossref_primary_10_1080_02640414_2024_2419239
crossref_primary_10_1007_s00421_024_05520_4
crossref_primary_10_1007_s00421_025_05857_4
crossref_primary_10_1007_s00421_023_05152_0
crossref_primary_10_1249_MSS_0000000000003412
crossref_primary_10_1152_japplphysiol_00103_2025
crossref_primary_10_1093_gerona_glae257
crossref_primary_10_1249_MSS_0000000000003697
crossref_primary_10_1155_tsm2_2008291
crossref_primary_10_1113_EP092726
crossref_primary_10_1016_j_ijcard_2023_03_036
crossref_primary_10_1016_j_ijcard_2024_132335
crossref_primary_10_3390_jfmk9040214
crossref_primary_10_1249_MSS_0000000000003657
crossref_primary_10_1007_s00421_022_05073_4
crossref_primary_10_3390_jcm13175340
crossref_primary_10_1007_s40279_024_02131_z
crossref_primary_10_3389_fphys_2022_899670
crossref_primary_10_1055_a_2611_3598
crossref_primary_10_1080_02640414_2025_2457863
crossref_primary_10_1016_j_jth_2025_102064
crossref_primary_10_1080_02701367_2022_2159309
crossref_primary_10_1249_MSS_0000000000003765
crossref_primary_10_1097_HCR_0000000000000837
crossref_primary_10_1519_JSC_0000000000004597
crossref_primary_10_1249_MSS_0000000000003562
crossref_primary_10_1249_MSS_0000000000003684
crossref_primary_10_1113_EP090878
crossref_primary_10_1139_apnm_2024_0042
crossref_primary_10_1249_MSS_0000000000003362
crossref_primary_10_1007_s00421_023_05182_8
crossref_primary_10_1016_j_bspc_2023_104836
crossref_primary_10_1016_j_cjca_2023_07_029
crossref_primary_10_3389_fphys_2023_1122315
crossref_primary_10_1007_s00421_022_05106_y
crossref_primary_10_1249_MSS_0000000000003406
crossref_primary_10_1249_MSS_0000000000003249
crossref_primary_10_3390_s23020826
Cites_doi 10.1183/16000617.0141-2020
10.1016/j.resp.2011.05.018
10.1002/cphy.c100072
10.3109/00365517009046250
10.1152/jappl.1986.60.2.472
10.1113/JP279963
10.1152/japplphysiol.00942.2016
10.1152/japplphysiol.01092.2010
10.1177/2047487319859450
10.1097/HJR.0b013e328304fed4
10.1016/0034-5687(89)90076-5
10.1146/annurev.ph.58.030196.000321
10.1152/japplphysiol.90336.2008c
10.1016/j.jsams.2016.11.023
10.1097/HCR.0b013e3182757050
10.1152/jappl.1986.60.6.2020
10.1007/s00421-002-0786-y
10.1080/17461391.2014.966764
10.1113/expphysiol.2006.034363
10.1016/0092-8674(94)90361-1
10.1159/000413438
10.1080/02640414.2016.1182199
10.1123/ijspp.6.1.8
10.1152/jappl.1989.67.2.547
10.1249/MSS.0000000000001698
10.1152/japplphysiol.01416.2011
10.1152/japplphysiol.00640.2005
10.1139/apnm-2017-0826
10.1152/jappl.1981.50.1.217
10.1249/MSS.0000000000000613
10.2165/11599690-000000000-00000
10.1186/s12970-021-00410-y
10.3389/fnins.2015.00022
10.1016/j.ijcard.2019.04.053
10.1249/MSS.0000000000001699
10.1002/cphy.c100045
10.1056/NEJM197105062841809
10.1007/s00421-021-04620-9
10.1371/journal.pone.0199794
10.1249/MSS.0000000000001226
10.1152/japplphysiol.00508.2019
10.1113/expphysiol.2014.080812
10.1111/j.1469-445X.1999.01868.x
10.1152/jappl.1973.35.2.236
10.1249/MSS.0000000000002147
10.1016/S0034-5687(98)00097-8
10.1249/MSS.0000000000000939
10.1097/00005768-199805000-00001
10.1152/advan.00086.2017
10.1152/jappl.1992.72.3.954
10.1152/japplphysiol.00804.2015
10.1136/bjsm.32.3.199
10.2165/00007256-200333060-00003
10.1249/MSS.0000000000001880
10.1007/s40279-020-01322-8
10.1080/00140138808966766
10.1111/sms.13280
10.1113/jphysiol.2007.142026
10.1016/j.jsams.2018.05.004
10.1371/journal.pone.0113884
10.1249/MSS.0000000000002343
10.1016/j.chest.2019.03.013
10.1152/jappl.1987.62.5.2003
10.1002/cphy.c100055
10.1139/y83-207
10.1007/s40279-020-01314-8
10.1007/s00421-012-2421-x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Copyright Springer Nature B.V. Feb 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
– notice: Copyright Springer Nature B.V. Feb 2022
DBID AAYXX
CITATION
NPM
3V.
4T-
7QP
7RV
7TS
7U9
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
H94
K9.
KB0
M0S
M1P
M7N
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s40279-021-01581-z
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Docstoc
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Physical Education Index
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Docstoc
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Academic Middle East (New)
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1179-2035
EndPage 255
ExternalDocumentID 34694596
10_1007_s40279_021_01581_z
Genre Journal Article
Review
GrantInformation_xml – fundername: NSERC
  grantid: RGPIN-2015-00084; RGPIN-2016-03698
– fundername: NSERC
  grantid: RGPIN-2016-03698
– fundername: NSERC
  grantid: RGPIN-2015-00084
GroupedDBID ---
-5G
-BR
-EM
.GJ
.L3
0R~
123
186
199
1CY
1KJ
2JN
2JY
2KG
2LR
34G
354
36B
39C
3V.
4.4
406
53G
6I2
6PF
7RV
7X7
85S
88E
8FI
8FJ
8R4
8R5
8UJ
95.
AAAUJ
AAAVM
AABHQ
AACDK
AADNT
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AAKAS
AAQQT
AASML
AATNV
AATVU
AAUYE
AAWTL
AAYJJ
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABIPD
ABIVO
ABJNI
ABJOX
ABKCH
ABKMS
ABKTR
ABMQK
ABPLI
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWHX
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACGUR
ACHSB
ACMLO
ACOKC
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADFRT
ADHHG
ADJJI
ADKNI
ADQRH
ADRFC
ADURQ
ADYFF
ADYOE
ADZCM
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AERZD
AESKC
AEYRQ
AFBBN
AFKRA
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGNAY
AGQEE
AGQMX
AGRTI
AHIZS
AHMBA
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ASPBG
AUKKA
AVWKF
AXYYD
AZFZN
A~4
BENPR
BGNMA
BKEYQ
BPHCQ
BVXVI
BYPQX
CAG
CCPQU
COF
CS3
DCUDU
DPUIP
DU5
EBLON
EBS
EJD
EMOBN
EX3
F5P
FD6
FIGPU
FINBP
FNLPD
FSGXE
FYUFA
GGCAI
GNWQR
GRRUI
HF~
HG6
HMCUK
H~9
IAO
IEA
IHR
IKXTQ
IMOTQ
INH
INR
ITC
IWAJR
J-C
JZLTJ
KOV
LLZTM
M1P
M4Y
NAPCQ
NPVJJ
NQJWS
NU0
O9J
OAC
OHH
OHT
OVD
P2P
PCD
PQQKQ
PROAC
PSQYO
PT4
Q2X
R2J
ROL
RSV
RZALA
S16
SCLPG
SDE
SISQX
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TEORI
TN5
TSG
TWZ
U9L
UAP
UAX
UG4
UKHRP
UKR
UOJIU
UTJUX
VDBLX
W48
WF8
WH7
WOW
YCJ
YFH
YQY
YYQ
Z5O
Z7U
Z7W
Z7X
Z81
Z83
Z87
ZGI
ZMTXR
ZOVNA
ZXP
~JE
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
IPT
PHGZM
PHGZT
PJZUB
PPXIY
NPM
4T-
7QP
7TS
7U9
7XB
8FK
H94
K9.
M7N
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c375t-a1fcaef1ab8944f2740d2911fe69793ae93f852f5f0264989203469a7b200dc33
IEDL.DBID RSV
ISICitedReferencesCount 121
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000710846600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0112-1642
1179-2035
IngestDate Thu Oct 02 10:18:28 EDT 2025
Wed Nov 05 02:11:36 EST 2025
Wed Feb 19 02:25:40 EST 2025
Sat Nov 29 05:12:31 EST 2025
Tue Nov 18 21:19:07 EST 2025
Fri Feb 21 02:46:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-a1fcaef1ab8944f2740d2911fe69793ae93f852f5f0264989203469a7b200dc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4221-6104
0000-0002-5656-373X
0000-0002-6460-6453
PMID 34694596
PQID 2625004227
PQPubID 32197
PageCount 19
ParticipantIDs proquest_miscellaneous_2585925878
proquest_journals_2625004227
pubmed_primary_34694596
crossref_primary_10_1007_s40279_021_01581_z
crossref_citationtrail_10_1007_s40279_021_01581_z
springer_journals_10_1007_s40279_021_01581_z
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
2022-Feb
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New Zealand
– name: Auckland
PublicationTitle Sports medicine (Auckland)
PublicationTitleAbbrev Sports Med
PublicationTitleAlternate Sports Med
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Beneke, Leithäuser, Ochentel (CR67) 2011; 6
Whipp, Ward (CR15) 1998; 32
Whipp, Steinacker, Ward (CR19) 1996
Iannetta, Inglis, Mattu, Fontana, Pogliaghi, Keir (CR5) 2020; 52
Loe, Steinshamn, Wisløff (CR12) 2014; 9
Jamnick, Pettitt, Granata, Pyne, Bishop (CR11) 2020; 50
Scherr, Wolfarth, Christle, Pressler, Wagenpfeil, Halle (CR26) 2013; 113
Black, Bowtell, McDonagh, Blackwell, Kelly, Bailey (CR25) 2016; 122
Ozcelik, Ward, Whipp (CR59) 1999; 84
Broxterman, Ade, Craig, Wilcox, Schlup, Barstow (CR69) 2015; 15
Poole, Burnley, Vanhatalo, Rossiter, Jones (CR66) 2016; 48
Jorfeldt, Juhlin-Dannfelt, Karlsson (CR47) 1978; 44
Forster, Haouzi, Dempsey (CR17) 2012; 2012
Lamarra, Whipp, Ward, Wasserman (CR73) 1987; 62
Stanley, Gertz, Wisneski (CR48) 1985; 1985
Murias, Pogliaghi, Paterson (CR35) 2018; 9
Mitchell, Blomqvist (CR37) 1971; 1971
Iannetta, Keir, Fontana, Inglis, Mattu, Paterson (CR31) 2021
Buchfuhrer, Hansen, Robinson, Sue, Wasserman, Whipp (CR76) 1983; 55
Beaver, Wasserman, Whipp (CR4) 1986; 60
Poole, Ward, Gardner, Whipp (CR22) 1988; 31
Burnley, Jones (CR24) 2016; 3
Iannetta, Inglis, Fullerton, Passfield, Murias (CR29) 2018; 28
Billat, Sirvent, Py, Koralsztein, Mercier (CR45) 2003; 33
Calvo, Xu, Mon-López, Pareja-Galeano, Jiménez (CR61) 2021; 18
Roston, Whipp, Davis, Cunningham, Effros, Wasserman (CR23) 1987; 135
Broxterman, Craig, Richardson (CR34) 2018; 50
Whipp, Davis, Wasserman (CR2) 1989; 76
Iannetta, de Azevedo, Keir, Murias (CR39) 2019; 127
Karlsson, Diamant, Saltin (CR46) 1970; 26
Agostoni, Sciomer, Palermo, Contini, Pezzuto, Farina (CR70) 2021; 30
Keir, Pogliaghi, Murias (CR33) 2018; 50
Casaburi, Barstow, Robinson, Wasserman (CR53) 1989; 67
Poole, Jones (CR30) 2012; 2
Iannetta, Fontana, Maturana, Inglis, Pogliaghi, Murias (CR6) 2018; 21
Hansen, Bonné, Alders, Hermans, Copermans, Swinnen (CR9) 2019; 26
Bruce (CR60) 2017; 41
Wasserman, Beaver, Sun, Stringer (CR63) 2011; 178
Bossi, Lima, de Lima, Hopker (CR13) 2017; 35
Mezzani, Hamm, Jones, McBride, Moholdt, Stone (CR8) 2012; 32
Lindinger, Heigenhauser (CR50) 2012; 2
Whipp, Ward, Wasserman (CR32) 1986; 35
Wagner (CR36) 1996; 58
Agostoni, Dumitrescu (CR75) 2019; 288
Whipp, Mahler, West (CR20) 1980
Wasserman, Whipp, Koyl, Beaver, Koyal, Beaver (CR3) 1973; 35
Dekerle, Baron, Dupont, Vanvelcenaher, Pelayo (CR68) 2003; 89
Meyer, Schwaibold, Hajric, Westbrook, Ebfeld, Leyk (CR57) 1998; 30
Beaver, Wasserman, Whipp (CR1) 1986; 60
Keir, Fontana, Robertson, Murias, Paterson, Kowalchuk (CR65) 2015; 47
Caen, Pogliaghi, Lievens, Vermeire, Bourgois, Boone (CR64) 2021; 121
Keir, Benson, Love, Robertson, Rossiter, Kowalchuk (CR77) 2016; 120
O’Donnell, Webb (CR71) 2008; 105
Keir, Murias, Paterson, Kowalchuk (CR74) 2014; 99
Murgatroyd, Ferguson, Ward, Whipp, Rossiter (CR28) 2011; 110
Carriere, Corrà, Piepoli, Bonomi, Merlo, Barbieri (CR14) 2019; 156
Duffin (CR49) 2005; 99
Scheuermann, Kowalchuk (CR40) 1998; 114
Stewart (CR51) 1983; 61
Rossiter (CR16) 2011; 1
Jones, Wilkerson, Fulford (CR21) 2008; 586
Rogatzki, Ferguson, Goodwin, Gladden (CR43) 2015; 9
Jamnick, Botella, Pyne, Bishop (CR52) 2018; 13
Binder, Wonisch, Corra, Cohen-Solal, Vanhees, Saner (CR72) 2008; 15
Whipp, Davis, Torres, Wasserman (CR54) 1981; 50
Boone, Bourgois (CR55) 2012; 42
Galán-Rioja, González-Mohíno, Poole, González-Ravé (CR10) 2020; 50
Mattioni Maturana, Keir, McLay, Murias (CR27) 2017; 20
Garcia, Goldstein, Pathak, Anderson, Brown (CR44) 1994; 76
Keir, Paterson, Kowalchuk, Murias (CR42) 2018; 43
Stringer, Casaburi, Wasserman (CR62) 1992; 72
Whipp (CR58) 2007; 92
Iannetta, Murias, Keir (CR56) 2019; 51
Leo, Sabapathy, Simmonds, Cross (CR41) 2017; 49
Bowen, Cannon, Begg, Baliga, Witte, Rossiter (CR38) 2012; 113
Iannetta, Inglis, Pogliaghi, Murias, Keir (CR7) 2020; 52
Poole, Rossiter, Brooks, Gladden (CR18) 2021; 599
MJ Rogatzki (1581_CR43) 2015; 9
D Iannetta (1581_CR56) 2019; 51
WL Beaver (1581_CR1) 1986; 60
D Iannetta (1581_CR7) 2020; 52
C Carriere (1581_CR14) 2019; 156
J Duffin (1581_CR49) 2005; 99
NA Jamnick (1581_CR52) 2018; 13
RK Binder (1581_CR72) 2008; 15
WL Roston (1581_CR23) 1987; 135
J Scherr (1581_CR26) 2013; 113
DC Poole (1581_CR18) 2021; 599
DA Keir (1581_CR74) 2014; 99
MÁ Galán-Rioja (1581_CR10) 2020; 50
DA Keir (1581_CR42) 2018; 43
JL Calvo (1581_CR61) 2021; 18
PD Wagner (1581_CR36) 1996; 58
K Wasserman (1581_CR63) 2011; 178
SR Murgatroyd (1581_CR28) 2011; 110
TS Bowen (1581_CR38) 2012; 113
WC Stanley (1581_CR48) 1985; 1985
J Dekerle (1581_CR68) 2003; 89
DC Poole (1581_CR30) 2012; 2
D Iannetta (1581_CR39) 2019; 127
JM Murias (1581_CR35) 2018; 9
M Burnley (1581_CR24) 2016; 3
DC Poole (1581_CR66) 2016; 48
WL Beaver (1581_CR4) 1986; 60
RM Bruce (1581_CR60) 2017; 41
DC Poole (1581_CR22) 1988; 31
J Boone (1581_CR55) 2012; 42
K Wasserman (1581_CR3) 1973; 35
K Caen (1581_CR64) 2021; 121
A Mezzani (1581_CR8) 2012; 32
BJ Whipp (1581_CR19) 1996
DA Keir (1581_CR65) 2015; 47
MI Lindinger (1581_CR50) 2012; 2
BJ Whipp (1581_CR54) 1981; 50
J Karlsson (1581_CR46) 1970; 26
NA Jamnick (1581_CR11) 2020; 50
HB Rossiter (1581_CR16) 2011; 1
V Billat (1581_CR45) 2003; 33
D Iannetta (1581_CR29) 2018; 28
HV Forster (1581_CR17) 2012; 2012
RM Broxterman (1581_CR34) 2018; 50
DE O’Donnell (1581_CR71) 2008; 105
D Iannetta (1581_CR31) 2021
BW Scheuermann (1581_CR40) 1998; 114
O Ozcelik (1581_CR59) 1999; 84
RM Broxterman (1581_CR69) 2015; 15
AM Jones (1581_CR21) 2008; 586
BJ Whipp (1581_CR32) 1986; 35
BJ Whipp (1581_CR15) 1998; 32
MI Black (1581_CR25) 2016; 122
K Meyer (1581_CR57) 1998; 30
D Iannetta (1581_CR5) 2020; 52
BJ Whipp (1581_CR2) 1989; 76
N Lamarra (1581_CR73) 1987; 62
BJ Whipp (1581_CR58) 2007; 92
D Hansen (1581_CR9) 2019; 26
PA Stewart (1581_CR51) 1983; 61
JA Leo (1581_CR41) 2017; 49
P Agostoni (1581_CR75) 2019; 288
MJ Buchfuhrer (1581_CR76) 1983; 55
AH Bossi (1581_CR13) 2017; 35
JH Mitchell (1581_CR37) 1971; 1971
W Stringer (1581_CR62) 1992; 72
DA Keir (1581_CR77) 2016; 120
H Loe (1581_CR12) 2014; 9
R Casaburi (1581_CR53) 1989; 67
D Iannetta (1581_CR6) 2018; 21
CK Garcia (1581_CR44) 1994; 76
L Jorfeldt (1581_CR47) 1978; 44
F Mattioni Maturana (1581_CR27) 2017; 20
BJ Whipp (1581_CR20) 1980
DA Keir (1581_CR33) 2018; 50
R Beneke (1581_CR67) 2011; 6
P Agostoni (1581_CR70) 2021; 30
References_xml – volume: 50
  start-page: 2379
  year: 2018
  end-page: 2382
  ident: CR34
  article-title: The respiratory compensation point and the deoxygenation break point are not valid surrogates for critical power and maximum lactate steady state
  publication-title: Med Sci Sports Exerc
– volume: 41
  start-page: 539
  year: 2017
  end-page: 547
  ident: CR60
  article-title: The control of ventilation during exercise: a lesson in critical thinking
  publication-title: Adv Physiol Educ
– volume: 61
  start-page: 1444
  year: 1983
  end-page: 1461
  ident: CR51
  article-title: Modern quantitative acid-base chemistry
  publication-title: Can J Physiol Pharmacol
– volume: 50
  start-page: 217
  year: 1981
  end-page: 221
  ident: CR54
  article-title: A test to determine parameters of aerobic function during exercise
  publication-title: J Appl Physiol
– volume: 32
  start-page: 327
  year: 2012
  end-page: 350
  ident: CR8
  article-title: Aerobic exercise intensity assessment and prescription in cardiac rehabilitation
  publication-title: J Cardiopulm Rehabil Prev
– volume: 1
  start-page: 203
  year: 2011
  end-page: 244
  ident: CR16
  article-title: Exercise: kinetic consideration for gas exchange
  publication-title: Compr Physiol
– volume: 50
  start-page: 1729
  year: 2020
  end-page: 1756
  ident: CR11
  article-title: An examination and critique of current methods to determine exercise intensity
  publication-title: Sport Med
– volume: 127
  start-page: 1519
  year: 2019
  end-page: 1527
  ident: CR39
  article-title: Establishing the O versus constant-work rate relationship from ramp-incremental exercise: Simple strategies for an unsolved problem
  publication-title: J Appl Physiol
– volume: 18
  start-page: 1
  year: 2021
  end-page: 17
  ident: CR61
  article-title: Effect of sodium bicarbonate contribution on energy metabolism during exercise: a systematic review and meta-analysis
  publication-title: J Int Soc Sports Nutr
– volume: 55
  start-page: 1558
  year: 1983
  end-page: 1564
  ident: CR76
  article-title: Optimizing the exercise protocol for cardiopulmonary assessment
  publication-title: J Appl Physiol Respir Environ Exerc Physiol
– volume: 35
  start-page: 236
  year: 1973
  end-page: 243
  ident: CR3
  article-title: Anaerobic threshold and respiratory gas exchange during exercise
  publication-title: J Appl Physiol
– volume: 9
  start-page: 1
  year: 2018
  end-page: 8
  ident: CR35
  article-title: Measurement of a true O during a ramp incremental test is not confirmed by a verification phase
  publication-title: Front Physiol
– year: 2021
  ident: CR31
  publication-title: Evaluating the accuracy of using fixed ranges of METs to categorize exertional intensity in a heterogeneous group of healthy individuals: implications for cardiorespiratory fitness and health outcomes
– volume: 2012
  start-page: 743
  year: 2012
  end-page: 777
  ident: CR17
  article-title: Control of breathing during exercise
  publication-title: Compr Physiol
– volume: 110
  start-page: 1598
  year: 2011
  end-page: 1606
  ident: CR28
  article-title: Pulmonary O uptake kinetics as a determinant of high-intensity exercise tolerance in humans
  publication-title: J Appl Physiol
– volume: 113
  start-page: 147
  year: 2013
  end-page: 155
  ident: CR26
  article-title: Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity
  publication-title: Eur J Appl Physiol
– volume: 76
  start-page: 357
  year: 1989
  end-page: 367
  ident: CR2
  article-title: Ventilatory control of the “isocapnic buffering” region in rapidly-incremental exercise
  publication-title: Respir Physiol
– volume: 43
  start-page: 882
  year: 2018
  end-page: 892
  ident: CR42
  article-title: Using ramp-incremental ̇O responses for constant-intensity exercise selection
  publication-title: Appl Physiol Nutr Metab
– volume: 3
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR24
  article-title: Power–duration relationship: Physiology, fatigue, and the limits of human performance
  publication-title: Eur J Sport Sci
– volume: 32
  start-page: 199
  year: 1998
  end-page: 211
  ident: CR15
  article-title: Determinants and control of breathing during muscular exercise
  publication-title: Br J Sports Med
– volume: 99
  start-page: 2255
  year: 2005
  end-page: 2265
  ident: CR49
  article-title: Role of acid-base balance in the chemoreflex control of breathing
  publication-title: J Appl Physiol
– volume: 6
  start-page: 8
  year: 2011
  end-page: 24
  ident: CR67
  article-title: Blood lactate diagnostics in exercise testing and training
  publication-title: Int J Sports Physiol Perform
– volume: 58
  start-page: 21
  year: 1996
  end-page: 50
  ident: CR36
  article-title: Determinants of maximal oxygen transport and utilization
  publication-title: Annu Rev Physiol
– volume: 113
  start-page: 451
  year: 2012
  end-page: 458
  ident: CR38
  article-title: A novel cardiopulmonary exercise test protocol and criterion to determine maximal oxygen uptake in chronic heart failure
  publication-title: J Appl Physiol
– volume: 50
  start-page: 2375
  year: 2018
  end-page: 2378
  ident: CR33
  article-title: The respiratory compensation point and the deoxygenation break point are valid surrogates for critical power and maximum lactate steady state
  publication-title: Med Sci Sport Exerc
– volume: 47
  start-page: 1932
  year: 2015
  end-page: 1940
  ident: CR65
  article-title: Exercise intensity thresholds: identifying the boundaries of sustainable performance
  publication-title: Med Sci Sports Exerc
– volume: 586
  start-page: 889
  year: 2008
  end-page: 898
  ident: CR21
  article-title: Muscle [phosphocreatine] dynamics following the onset of exercise in humans: the influence of baseline work-rate
  publication-title: J Physiol
– volume: 42
  start-page: 511
  year: 2012
  end-page: 526
  ident: CR55
  article-title: The oxygen uptake response to incremental ramp exercise: methodogical and physiological issues
  publication-title: Sport Med
– volume: 72
  start-page: 954
  year: 1992
  end-page: 961
  ident: CR62
  article-title: Acid-base regulation during exercise and recovery in humans
  publication-title: J Appl Physiol
– volume: 105
  start-page: 755
  year: 2008
  end-page: 757
  ident: CR71
  article-title: The major limitation to exercise performance in COPD is dynamic hyperinflation
  publication-title: J Appl Physiol
– start-page: 83
  year: 1996
  end-page: 89
  ident: CR19
  article-title: Domains of aerobic function and their limiting parameters
  publication-title: Physiol Pathophysiol Exerc Toler
– volume: 76
  start-page: 865
  year: 1994
  end-page: 873
  ident: CR44
  article-title: Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle
  publication-title: Cell
– volume: 2
  start-page: 2203
  year: 2012
  end-page: 2254
  ident: CR50
  article-title: Effects of gas exchange on acid-base balance
  publication-title: Compr Physiol Compr Physiol
– volume: 30
  start-page: 200141
  year: 2021
  ident: CR70
  article-title: Minute ventilation/carbon dioxide production in chronic heart failure
  publication-title: Eur Respir Rev
– volume: 9
  start-page: 1
  year: 2015
  end-page: 7
  ident: CR43
  article-title: Lactate is always the end product of glycolysis
  publication-title: Front Neurosci
– volume: 599
  start-page: 737
  year: 2021
  end-page: 767
  ident: CR18
  article-title: The anaerobic threshold: 50+ years of controversy
  publication-title: J Physiol
– volume: 1985
  start-page: 249
  year: 1985
  ident: CR48
  article-title: Systemic lactate kinetics during graded exercise in man
  publication-title: Am J Physiol Endocrinol Metab
– volume: 20
  start-page: 795
  year: 2017
  end-page: 799
  ident: CR27
  article-title: Critical power testing or self-selected cycling: Which one is the best predictor of maximal metabolic steady-state?
  publication-title: J Sci Med Sport
– volume: 67
  start-page: 547
  year: 1989
  end-page: 555
  ident: CR53
  article-title: Influence of work rate on ventilatory and gas exchange kinetics
  publication-title: J Appl Physiol
– volume: 28
  start-page: 2481
  year: 2018
  end-page: 2493
  ident: CR29
  article-title: Metabolic and performance-related consequences of exercising at and slightly above MLSS
  publication-title: Scand J Med Sci Sport
– volume: 178
  start-page: 191
  year: 2011
  end-page: 195
  ident: CR63
  article-title: Arterial H(+) regulation during exercise in humans
  publication-title: Respir Physiol Neurobiol
– volume: 121
  start-page: 1899
  year: 2021
  end-page: 1907
  ident: CR64
  article-title: Ramp vs. step tests: valid alternatives to determine the maximal lactate steady-state intensity?
  publication-title: Eur J Appl Physiol
– start-page: 33
  year: 1980
  end-page: 96
  ident: CR20
  article-title: Dynamics of pulmonary gas exchange during exercise
  publication-title: Pulm gas exch vol II, org environ
– volume: 51
  start-page: 1080
  year: 2019
  end-page: 1086
  ident: CR56
  article-title: A simple method to quantify the VO mean response time of ramp-incremental exercise
  publication-title: Med Sci Sport Exerc
– volume: 84
  start-page: 999
  year: 1999
  end-page: 1011
  ident: CR59
  article-title: Effect of altered body CO stores on pulmonary gas exchange dynamics during incremental exercise in humans
  publication-title: Exp Physiol
– volume: 30
  start-page: 643
  year: 1998
  end-page: 648
  ident: CR57
  article-title: Delayed VO kinetics during ramp exercise: a criterion for cardiopulmonary exercise capacity in chronic heart failure
  publication-title: Med Sci Sports Exerc
– volume: 48
  start-page: 2320
  year: 2016
  end-page: 2334
  ident: CR66
  article-title: Critical power: an important fatigue threshold in exercise physiology
  publication-title: Med Sci Sport Exerc
– volume: 60
  start-page: 472
  year: 1986
  end-page: 478
  ident: CR4
  article-title: Bicarbonate buffering of lactic acid generated during exercise
  publication-title: J Appl Physiol
– volume: 35
  start-page: 1364
  year: 2017
  end-page: 1371
  ident: CR13
  article-title: Laboratory predictors of uphill cycling performance in trained cyclists
  publication-title: J Sports Sci Routledge
– volume: 15
  start-page: 631
  year: 2015
  end-page: 639
  ident: CR69
  article-title: The relationship between critical speed and the respiratory compensation point: coincidence or equivalence
  publication-title: Eur J Sport Sci
– volume: 35
  start-page: 47
  year: 1986
  end-page: 64
  ident: CR32
  article-title: Respiratory markers of the anaerobic threshold
  publication-title: Adv Cardiol
– volume: 114
  start-page: 227
  year: 1998
  end-page: 238
  ident: CR40
  article-title: Attenuated respiratory compensation during rapidly incremented ramp exercise
  publication-title: Respir Physiol
– volume: 122
  start-page: 446
  year: 2016
  end-page: 459
  ident: CR25
  article-title: Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains
  publication-title: J Appl Physiol
– volume: 52
  start-page: 2011
  year: 2020
  end-page: 2019
  ident: CR7
  article-title: A “step-ramp-step” protocol to identify the maximal metabolic steady state
  publication-title: Med Sci Sport Exerc
– volume: 9
  start-page: 1
  year: 2014
  end-page: 22
  ident: CR12
  article-title: Cardio-respiratory reference data in 4631 healthy men and women 20–90 years: the HUNT 3 fitness study
  publication-title: PLoS ONE
– volume: 92
  start-page: 347
  year: 2007
  end-page: 355
  ident: CR58
  article-title: Physiological mechanisms dissociating pulmonary CO and O exchange dynamics during exercise in humans
  publication-title: Exp Physiol
– volume: 52
  start-page: 466
  year: 2020
  end-page: 473
  ident: CR5
  article-title: A critical evaluation of current methods for exercise prescription in women and men
  publication-title: Med Sci Sport Exerc
– volume: 120
  start-page: 503
  year: 2016
  end-page: 513
  ident: CR77
  article-title: Influence of muscle metabolic heterogeneity in determining the VO kinetic response to ramp-incremental exercise
  publication-title: J Appl Physiol
– volume: 26
  start-page: 385
  year: 1970
  end-page: 394
  ident: CR46
  article-title: Muscle metabolites during submaximal and maximal exercise in man
  publication-title: Scand J Clin Lab Invest
– volume: 1971
  start-page: 1018
  year: 1971
  end-page: 1022
  ident: CR37
  article-title: Maximal oxygen uptake
  publication-title: N Engl J Med
– volume: 26
  start-page: 1921
  year: 2019
  end-page: 1928
  ident: CR9
  article-title: Exercise training intensity determination in cardiovascular rehabilitation: should the guidelines be reconsidered?
  publication-title: Eur J Prev Cardiol
– volume: 44
  start-page: 350
  year: 1978
  end-page: 352
  ident: CR47
  article-title: Lactate release in relation to tissue lactate in human skeletal muscle during exercise
  publication-title: J Appl Physiol Respir Environ Exerc Physiol
– volume: 2
  start-page: 933
  year: 2012
  end-page: 996
  ident: CR30
  article-title: Oxygen uptake kinetics
  publication-title: Compr Physiol
– volume: 15
  start-page: 726
  year: 2008
  end-page: 734
  ident: CR72
  article-title: Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing
  publication-title: Eur J Cardiovasc Prev Rehabil
– volume: 156
  start-page: 338
  year: 2019
  end-page: 347
  ident: CR14
  article-title: Anaerobic threshold and respiratory compensation point identification during cardiopulmonary exercise tests in chronic heart failure
  publication-title: Chest
– volume: 288
  start-page: 107
  year: 2019
  end-page: 113
  ident: CR75
  article-title: How to perform and report a cardiopulmonary exercise test in patients with chronic heart failure
  publication-title: Int J Cardiol
– volume: 21
  start-page: 1274
  year: 2018
  end-page: 1280
  ident: CR6
  article-title: An equation to predict the maximal lactate steady state from ramp-incremental exercise test data in cycling
  publication-title: J Sci Med Sport
– volume: 62
  start-page: 2003
  year: 1987
  end-page: 2012
  ident: CR73
  article-title: Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics
  publication-title: J Appl Physiol
– volume: 60
  start-page: 2020
  year: 1986
  end-page: 2027
  ident: CR1
  article-title: A new method for detecting anaerobic threshold by gas exchange A new method for detecting threshold by gas exchange anaerobic
  publication-title: J Appl Physiol
– volume: 49
  start-page: 1452
  year: 2017
  end-page: 1460
  ident: CR41
  article-title: The respiratory compensation point is not a valid surrogate for critical power
  publication-title: Med Sci Sport Exerc
– volume: 89
  start-page: 281
  year: 2003
  end-page: 288
  ident: CR68
  article-title: Maximal lactate steady state, respiratory compensation threshold and critical power
  publication-title: Eur J Appl Physiol
– volume: 99
  start-page: 1511
  year: 2014
  end-page: 1522
  ident: CR74
  article-title: Breath-by-breath pulmonary O uptake kinetics: effect of data processing on confidence in estimating model parameters
  publication-title: Exp Physiol
– volume: 13
  start-page: 1
  year: 2018
  end-page: 21
  ident: CR52
  article-title: Manipulating graded exercise test variables affects the validity of the lactate threshold and VO
  publication-title: PLoS ONE
– volume: 31
  start-page: 1265
  year: 1988
  end-page: 1279
  ident: CR22
  article-title: Metabolic and respiratory profile of the upper limit for prolonged exercise in man
  publication-title: Ergonomics
– volume: 50
  start-page: 1771
  year: 2020
  end-page: 1783
  ident: CR10
  article-title: Relative proximity of critical power and metabolic/ventilatory thresholds: systematic review and meta-analysis
  publication-title: Sport Med
– volume: 33
  start-page: 407
  year: 2003
  end-page: 426
  ident: CR45
  article-title: The Concept of maximal lactate steady state
  publication-title: Sport Med
– volume: 135
  start-page: 1080
  year: 1987
  end-page: 1084
  ident: CR23
  article-title: Oxygen uptake kinetics and lactate concentration during exercise in humans
  publication-title: Am Rev Respir Dis
– volume: 30
  start-page: 200141
  year: 2021
  ident: 1581_CR70
  publication-title: Eur Respir Rev
  doi: 10.1183/16000617.0141-2020
– volume: 178
  start-page: 191
  year: 2011
  ident: 1581_CR63
  publication-title: Respir Physiol Neurobiol
  doi: 10.1016/j.resp.2011.05.018
– volume: 2
  start-page: 933
  year: 2012
  ident: 1581_CR30
  publication-title: Compr Physiol
  doi: 10.1002/cphy.c100072
– volume: 26
  start-page: 385
  year: 1970
  ident: 1581_CR46
  publication-title: Scand J Clin Lab Invest
  doi: 10.3109/00365517009046250
– volume: 60
  start-page: 472
  year: 1986
  ident: 1581_CR4
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1986.60.2.472
– volume: 599
  start-page: 737
  year: 2021
  ident: 1581_CR18
  publication-title: J Physiol
  doi: 10.1113/JP279963
– volume: 122
  start-page: 446
  year: 2016
  ident: 1581_CR25
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00942.2016
– start-page: 83
  volume-title: Physiol Pathophysiol Exerc Toler
  year: 1996
  ident: 1581_CR19
– volume: 110
  start-page: 1598
  year: 2011
  ident: 1581_CR28
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01092.2010
– volume: 26
  start-page: 1921
  year: 2019
  ident: 1581_CR9
  publication-title: Eur J Prev Cardiol
  doi: 10.1177/2047487319859450
– volume: 44
  start-page: 350
  year: 1978
  ident: 1581_CR47
  publication-title: J Appl Physiol Respir Environ Exerc Physiol
– volume: 55
  start-page: 1558
  year: 1983
  ident: 1581_CR76
  publication-title: J Appl Physiol Respir Environ Exerc Physiol
– volume: 135
  start-page: 1080
  year: 1987
  ident: 1581_CR23
  publication-title: Am Rev Respir Dis
– volume: 15
  start-page: 726
  year: 2008
  ident: 1581_CR72
  publication-title: Eur J Cardiovasc Prev Rehabil
  doi: 10.1097/HJR.0b013e328304fed4
– volume: 76
  start-page: 357
  year: 1989
  ident: 1581_CR2
  publication-title: Respir Physiol
  doi: 10.1016/0034-5687(89)90076-5
– volume: 58
  start-page: 21
  year: 1996
  ident: 1581_CR36
  publication-title: Annu Rev Physiol
  doi: 10.1146/annurev.ph.58.030196.000321
– volume: 105
  start-page: 755
  year: 2008
  ident: 1581_CR71
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.90336.2008c
– volume: 20
  start-page: 795
  year: 2017
  ident: 1581_CR27
  publication-title: J Sci Med Sport
  doi: 10.1016/j.jsams.2016.11.023
– volume: 32
  start-page: 327
  year: 2012
  ident: 1581_CR8
  publication-title: J Cardiopulm Rehabil Prev
  doi: 10.1097/HCR.0b013e3182757050
– volume: 60
  start-page: 2020
  year: 1986
  ident: 1581_CR1
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1986.60.6.2020
– volume: 89
  start-page: 281
  year: 2003
  ident: 1581_CR68
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-002-0786-y
– volume: 15
  start-page: 631
  year: 2015
  ident: 1581_CR69
  publication-title: Eur J Sport Sci
  doi: 10.1080/17461391.2014.966764
– volume: 92
  start-page: 347
  year: 2007
  ident: 1581_CR58
  publication-title: Exp Physiol
  doi: 10.1113/expphysiol.2006.034363
– volume: 76
  start-page: 865
  year: 1994
  ident: 1581_CR44
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90361-1
– volume-title: Evaluating the accuracy of using fixed ranges of METs to categorize exertional intensity in a heterogeneous group of healthy individuals: implications for cardiorespiratory fitness and health outcomes
  year: 2021
  ident: 1581_CR31
– volume: 35
  start-page: 47
  year: 1986
  ident: 1581_CR32
  publication-title: Adv Cardiol
  doi: 10.1159/000413438
– volume: 35
  start-page: 1364
  year: 2017
  ident: 1581_CR13
  publication-title: J Sports Sci Routledge
  doi: 10.1080/02640414.2016.1182199
– volume: 6
  start-page: 8
  year: 2011
  ident: 1581_CR67
  publication-title: Int J Sports Physiol Perform
  doi: 10.1123/ijspp.6.1.8
– volume: 67
  start-page: 547
  year: 1989
  ident: 1581_CR53
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1989.67.2.547
– volume: 1985
  start-page: 249
  year: 1985
  ident: 1581_CR48
  publication-title: Am J Physiol Endocrinol Metab
– volume: 50
  start-page: 2375
  year: 2018
  ident: 1581_CR33
  publication-title: Med Sci Sport Exerc
  doi: 10.1249/MSS.0000000000001698
– volume: 113
  start-page: 451
  year: 2012
  ident: 1581_CR38
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01416.2011
– volume: 99
  start-page: 2255
  year: 2005
  ident: 1581_CR49
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00640.2005
– volume: 43
  start-page: 882
  year: 2018
  ident: 1581_CR42
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/apnm-2017-0826
– volume: 50
  start-page: 217
  year: 1981
  ident: 1581_CR54
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1981.50.1.217
– volume: 47
  start-page: 1932
  year: 2015
  ident: 1581_CR65
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0000000000000613
– volume: 42
  start-page: 511
  year: 2012
  ident: 1581_CR55
  publication-title: Sport Med
  doi: 10.2165/11599690-000000000-00000
– volume: 18
  start-page: 1
  year: 2021
  ident: 1581_CR61
  publication-title: J Int Soc Sports Nutr
  doi: 10.1186/s12970-021-00410-y
– volume: 9
  start-page: 1
  year: 2015
  ident: 1581_CR43
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2015.00022
– volume: 288
  start-page: 107
  year: 2019
  ident: 1581_CR75
  publication-title: Int J Cardiol
  doi: 10.1016/j.ijcard.2019.04.053
– volume: 9
  start-page: 1
  year: 2018
  ident: 1581_CR35
  publication-title: Front Physiol
– volume: 50
  start-page: 2379
  year: 2018
  ident: 1581_CR34
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0000000000001699
– volume: 2012
  start-page: 743
  year: 2012
  ident: 1581_CR17
  publication-title: Compr Physiol
  doi: 10.1002/cphy.c100045
– volume: 1971
  start-page: 1018
  year: 1971
  ident: 1581_CR37
  publication-title: N Engl J Med
  doi: 10.1056/NEJM197105062841809
– volume: 121
  start-page: 1899
  year: 2021
  ident: 1581_CR64
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-021-04620-9
– volume: 13
  start-page: 1
  year: 2018
  ident: 1581_CR52
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0199794
– volume: 49
  start-page: 1452
  year: 2017
  ident: 1581_CR41
  publication-title: Med Sci Sport Exerc
  doi: 10.1249/MSS.0000000000001226
– volume: 127
  start-page: 1519
  year: 2019
  ident: 1581_CR39
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00508.2019
– volume: 99
  start-page: 1511
  year: 2014
  ident: 1581_CR74
  publication-title: Exp Physiol
  doi: 10.1113/expphysiol.2014.080812
– volume: 3
  start-page: 1
  year: 2016
  ident: 1581_CR24
  publication-title: Eur J Sport Sci
– volume: 84
  start-page: 999
  year: 1999
  ident: 1581_CR59
  publication-title: Exp Physiol
  doi: 10.1111/j.1469-445X.1999.01868.x
– volume: 35
  start-page: 236
  year: 1973
  ident: 1581_CR3
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1973.35.2.236
– volume: 52
  start-page: 466
  year: 2020
  ident: 1581_CR5
  publication-title: Med Sci Sport Exerc
  doi: 10.1249/MSS.0000000000002147
– start-page: 33
  volume-title: Pulm gas exch vol II, org environ
  year: 1980
  ident: 1581_CR20
– volume: 114
  start-page: 227
  year: 1998
  ident: 1581_CR40
  publication-title: Respir Physiol
  doi: 10.1016/S0034-5687(98)00097-8
– volume: 48
  start-page: 2320
  year: 2016
  ident: 1581_CR66
  publication-title: Med Sci Sport Exerc
  doi: 10.1249/MSS.0000000000000939
– volume: 30
  start-page: 643
  year: 1998
  ident: 1581_CR57
  publication-title: Med Sci Sports Exerc
  doi: 10.1097/00005768-199805000-00001
– volume: 41
  start-page: 539
  year: 2017
  ident: 1581_CR60
  publication-title: Adv Physiol Educ
  doi: 10.1152/advan.00086.2017
– volume: 72
  start-page: 954
  year: 1992
  ident: 1581_CR62
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1992.72.3.954
– volume: 120
  start-page: 503
  year: 2016
  ident: 1581_CR77
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00804.2015
– volume: 32
  start-page: 199
  year: 1998
  ident: 1581_CR15
  publication-title: Br J Sports Med
  doi: 10.1136/bjsm.32.3.199
– volume: 33
  start-page: 407
  year: 2003
  ident: 1581_CR45
  publication-title: Sport Med
  doi: 10.2165/00007256-200333060-00003
– volume: 51
  start-page: 1080
  year: 2019
  ident: 1581_CR56
  publication-title: Med Sci Sport Exerc
  doi: 10.1249/MSS.0000000000001880
– volume: 50
  start-page: 1729
  year: 2020
  ident: 1581_CR11
  publication-title: Sport Med
  doi: 10.1007/s40279-020-01322-8
– volume: 31
  start-page: 1265
  year: 1988
  ident: 1581_CR22
  publication-title: Ergonomics
  doi: 10.1080/00140138808966766
– volume: 28
  start-page: 2481
  year: 2018
  ident: 1581_CR29
  publication-title: Scand J Med Sci Sport
  doi: 10.1111/sms.13280
– volume: 586
  start-page: 889
  year: 2008
  ident: 1581_CR21
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2007.142026
– volume: 21
  start-page: 1274
  year: 2018
  ident: 1581_CR6
  publication-title: J Sci Med Sport
  doi: 10.1016/j.jsams.2018.05.004
– volume: 9
  start-page: 1
  year: 2014
  ident: 1581_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0113884
– volume: 52
  start-page: 2011
  year: 2020
  ident: 1581_CR7
  publication-title: Med Sci Sport Exerc
  doi: 10.1249/MSS.0000000000002343
– volume: 156
  start-page: 338
  year: 2019
  ident: 1581_CR14
  publication-title: Chest
  doi: 10.1016/j.chest.2019.03.013
– volume: 1
  start-page: 203
  year: 2011
  ident: 1581_CR16
  publication-title: Compr Physiol
– volume: 62
  start-page: 2003
  year: 1987
  ident: 1581_CR73
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1987.62.5.2003
– volume: 2
  start-page: 2203
  year: 2012
  ident: 1581_CR50
  publication-title: Compr Physiol Compr Physiol
  doi: 10.1002/cphy.c100055
– volume: 61
  start-page: 1444
  year: 1983
  ident: 1581_CR51
  publication-title: Can J Physiol Pharmacol
  doi: 10.1139/y83-207
– volume: 50
  start-page: 1771
  year: 2020
  ident: 1581_CR10
  publication-title: Sport Med
  doi: 10.1007/s40279-020-01314-8
– volume: 113
  start-page: 147
  year: 2013
  ident: 1581_CR26
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-012-2421-x
SSID ssj0005842
Score 2.644127
SecondaryResourceType review_article
Snippet During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 237
SubjectTerms Acidosis
Carbon dioxide
Exercise intensity
Exercise physiology
Gas exchange
Gases
Homeostasis
Identification
Internet resources
Lactic acid
Medicine
Medicine & Public Health
Metabolic acidosis
Metabolism
Physical fitness
Review Article
Sports Medicine
Teaching
Ventilation
SummonAdditionalLinks – databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS94wFD5MJ-LNnG7OOicZ7G6GtWlqEm_GEGVe-CLDDS8GJc0HCNI6--qFV_sL-4v-kp2k6fsyRG920VLoV9rzJDkn5-MB-MAaljeqkpT7SlHOc0MbGwpBNtyhRoGIMXkkmxCTiTw_V6dpwa1PYZXjmBgHatuZsEb-iaGiHgtWic9Xv2hgjQre1UShsQDPi6AbI57Ftx_zEA8ZyXMQwoyiWcBS0kxMnUO7SSgaAhRwQpQFvft3YnqgbT7wlMYJ6Gj1f5v-El4k1ZN8GbCyBs9cuw7LJ8m5_gp-Dkm7Pq3ikc6TSdfe__5z3N7qEOVODhM_EzlDBPTBcdXvk5PIQd3vkrHQrcNj3VrcyFDIlKCq-xq-Hx2eHXyliXyBmlJUU6oLb7TzhW6k4tyj8ZpbhiOjd3sK-7R2qvSyYr7yaMVxJRXLSzS1tUDh59aU5QYstl3rNoEIryvPi8AsY3kuRVMoq5lXjXC2KK3JoBj_fG1SZfJAkHFZz2oqR2nVKK06Squ-y-Dj7J6roS7Hk1dvj5KpUx_t67lYMng_O429K7hMdOu6G7wGrSmFOyEzeDMAYfa68Lm8UnsZ7I7ImD_88bZsPd2Wt7DCQoZFDAzfhsXp9Y17B0vmdnrRX-9EfP8FbH7-Tg
  priority: 102
  providerName: ProQuest
Title Identification of Non-Invasive Exercise Thresholds: Methods, Strategies, and an Online App
URI https://link.springer.com/article/10.1007/s40279-021-01581-z
https://www.ncbi.nlm.nih.gov/pubmed/34694596
https://www.proquest.com/docview/2625004227
https://www.proquest.com/docview/2585925878
Volume 52
WOSCitedRecordID wos000710846600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1179-2035
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005842
  issn: 0112-1642
  databaseCode: 7X7
  dateStart: 20080601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1179-2035
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005842
  issn: 0112-1642
  databaseCode: 7RV
  dateStart: 20080601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1179-2035
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005842
  issn: 0112-1642
  databaseCode: BENPR
  dateStart: 20080601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1179-2035
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005842
  issn: 0112-1642
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB_UFfHlTj3v7J0uObg3DbRpapJ7U1nRh11k9WS5l5K2CQhH97CrD_71N0nTingK-tBQaNqmM0lmpvPxA_jBChYXKpOU20xRzuOSFpUrBFlwgxoFzpgy9mATYjKRs5m6CElhTRft3rkk_U7dJ7uhpSMUdSEFKMJkQh-WYYDiTjrAhunl9WNgh_SQOThxGUVjgIVUmf8_46k4eqZjPvOPerFz-vF9A96AD0HNJEftvNiEJVNvwdo4ONI_we82QdeGP3ZkbslkXtPz-l67eHYyCkhM5Ap53TgXVfOTjD3adHNAupK2Bs91XeFB2pKlBJXabfh1Oro6OaMBZoGWqcgWVCe21MYmupCKc4tmalwx3AOtOVS4erVRqZUZs5lFe40rqVicolGtBbI5rso0_Qwr9bw2O0CE1ZnlicOQqXgsRZGoSjOrCmGqJK3KCJKO2nkZapA7KIw_eV892RMtR6Llnmj5QwT7_T1_2wocr_be7ZiYh9XY5AyNPF_sTETwvb-M68g5R3Rt5nfYB-0mhY2QEXxpmd-_zn0uz9RhBAcdpx8f_vJYvr6t-zdYZy63woeE78LK4vbO7MFqeb-4aW6HsCym166dCd_KIQyOR5OL6dDP_n915Pe_
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VLQIu5R8CLRgJTtQi8Tq1jYRQBa26anfFYZH2gBQc_0hIKGmbbSt66iv0RXgonoSxk-wKVfTWA4dEkeIkdvx5PGPPzAfwipUsLVUuKfe5opynhpY2JIIsuUONAhFj0kg2IcZjOZ2qz0vwq4-FCW6VvUyMgtrWJqyRv2WoqMeEVeLDwSENrFFhd7Wn0Ghhsed-nqLJ1rwffsL-fc3Yzvbk4y7tWAWoGYh8RnXmjXY-06VUnHu0ylLLcMh7t6kQrNqpgZc587lH84QrqVg6QBtSC2xVak1YAEWRv4JyXARjT0zFwqVERrIeHDKMohnCuiCdGKqHdppQNDhE4AQsM3r290R4Sbu9tDMbJ7ydO__br7oLq51qTbbasXAPllx1H26OOueBB_C1DUr23SolqT0Z19Xv84thdaKDFz_Z7vinyAQR3oSNueYdGUWO7WaD9Il8HV7ryuJB2kStBFX5h_DlWtr2CJarunJPgAivc8-zwJxjeSpFmSmrmVelcDYbWJNA1vd0YbrM64EA5Ecxzxkd0VEgOoqIjuIsgTfzZw7avCNXll7rkVB0MqgpFjBI4OX8NkqPsCWkK1cfYxm0FhWehEzgcQu8-edCc3muNhPY6JG4ePm_6_L06rq8gFu7k9F-sT8c7z2D2yxEk0Qn-DVYnh0du3W4YU5m35uj53FsEfh23Qj9A4fpWUg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1fa9UwFD-MOxm-6PxfnRpBn1xYm5suzUBE3b14mSsXmbAHoaZNAoPRzvVu4p78Cn6dfZx9Ek_S9F5kuLc9-NBSaNomzS8n5yTnnB_AS1ayuJRpRrlNJeU8rmipXSLIkhvUKBAxVezJJkSeZ_v7croE530sjHOr7GWiF9S6qdwa-QZDRd0nrBIbNrhFTLfHb4--U8cg5XZaezqNDiI75ucPNN_aN5Nt7OtXjI1Hex8-0sAwQKuhSGdUJbZSxiaqzCTnFi20WDMc_tZsSgSuMnJos5TZ1KKpwmUmWTxEe1IJbGGsK7cYiuJ_WaCSwQew_H6UTz8vHEwyT92DA4hRNEpYCNnxgXtotQlJnXsETsdZQs_-nhYv6bqX9mn99De-_T__uFW4FZRu8q4bJXdgydR3YWU3uBXcg69duLIN65eksSRv6otfvyf1qXL-_WQUmKnIHmK_dVt27RbZ9ezb7TrpU_wavFa1xoN0KVwJKvn34cu1tO0BDOqmNo-ACKtSyxPHqaN5nIkykVoxK0thdDLUVQRJ3-tFFXKyO2qQw2KeTdojpUCkFB4pxVkEr-fPHHUZSa4svdajogjSqS0WkIjgxfw2yhW3WaRq05xgGbQjJZ5EFsHDDoTzz7nm8lRuRrDeo3Lx8n_X5fHVdXkOKwjM4tMk33kCN5kLM_He8WswmB2fmKdwozqdHbTHz8JAI_DtuiH6B9BoY2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Non-Invasive+Exercise+Thresholds%3A+Methods%2C+Strategies%2C+and+an+Online+App&rft.jtitle=Sports+medicine+%28Auckland%29&rft.au=Keir%2C+Daniel+A.&rft.au=Iannetta%2C+Danilo&rft.au=Mattioni+Maturana%2C+Felipe&rft.au=Kowalchuk%2C+John+M.&rft.date=2022-02-01&rft.pub=Springer+International+Publishing&rft.issn=0112-1642&rft.eissn=1179-2035&rft.volume=52&rft.issue=2&rft.spage=237&rft.epage=255&rft_id=info:doi/10.1007%2Fs40279-021-01581-z&rft.externalDocID=10_1007_s40279_021_01581_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0112-1642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0112-1642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0112-1642&client=summon