Abiotic stress responses in plants
Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms un...
Uloženo v:
| Vydáno v: | Nature reviews. Genetics Ročník 23; číslo 2; s. 104 - 119 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.02.2022
Nature Publishing Group |
| Témata: | |
| ISSN: | 1471-0056, 1471-0064, 1471-0064 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.
In this Review, Zhang et al. summarize our current understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses, and how this knowledge can be used to improve crop resilience through genetic, chemical and microbial approaches. |
|---|---|
| AbstractList | Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.
In this Review, Zhang et al. summarize our current understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses, and how this knowledge can be used to improve crop resilience through genetic, chemical and microbial approaches. Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches. Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches. Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.In this Review, Zhang et al. summarize our current understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses, and how this knowledge can be used to improve crop resilience through genetic, chemical and microbial approaches. |
| Author | Gong, Zhizhong Zhu, Jian-Kang Zhang, Huiming Zhu, Jianhua |
| Author_xml | – sequence: 1 givenname: Huiming orcidid: 0000-0003-0695-3593 surname: Zhang fullname: Zhang, Huiming email: hmzhang@psc.ac.cn organization: Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences – sequence: 2 givenname: Jianhua surname: Zhu fullname: Zhu, Jianhua organization: Department of Plant Science and Landscape Architecture, University of Maryland – sequence: 3 givenname: Zhizhong surname: Gong fullname: Gong, Zhizhong organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Institute of Life Science and Green Development, School of Life Sciences, Hebei University – sequence: 4 givenname: Jian-Kang orcidid: 0000-0001-5134-731X surname: Zhu fullname: Zhu, Jian-Kang email: jkzhu@psc.ac.cn organization: Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34561623$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kDtPwzAUhS0Eog_4AwwogoUl4LeTsap4SZVYYLYS5walSp1gOwP_Hpe0IHWoh2tf6TtHx2eGTm1nAaErgu8JZtmD50QomWJKUow5YSk-QVPC1XaV_PTvLeQEzbxfY0wkUewcTRgXkkjKpuhmUTZdaEzigwPvkzj6znrwSWOTvi1s8BforC5aD5e7e44-nh7fly_p6u35dblYpYYpEdIcyrrKFWM5UKG45ECJMEXJqrxiNc3LzBiqjAJZZZznhAMIQ7ASdU1lVQCbo7vRt3fd1wA-6E3jDbQxBHSD19FVShEPjejtAbruBmdjOk0lJZxhiWWkrnfUUG6g0r1rNoX71vvfRyAbAeM67x3U2jShCE1ngyuaVhOst0XrsWgdi9a_RWscpfRAunc_KmKjyEfYfoL7j31E9QNH5o0b |
| CitedBy_id | crossref_primary_10_1007_s00344_024_11439_z crossref_primary_10_3389_fbioe_2022_929681 crossref_primary_10_3390_ijms25020893 crossref_primary_10_1016_j_ijbiomac_2025_145287 crossref_primary_10_3390_plants14131953 crossref_primary_10_3390_ijms25136845 crossref_primary_10_3390_plants12163007 crossref_primary_10_1093_pcp_pcad135 crossref_primary_10_3390_genes15091239 crossref_primary_10_3390_agronomy14081805 crossref_primary_10_3390_ijms252111792 crossref_primary_10_1016_j_carbpol_2024_122322 crossref_primary_10_1016_j_tplants_2025_05_017 crossref_primary_10_1111_tpj_16649 crossref_primary_10_1038_s41598_024_69670_3 crossref_primary_10_3390_plants14162459 crossref_primary_10_1093_hr_uhaf145 crossref_primary_10_1016_j_indcrop_2023_117893 crossref_primary_10_3390_plants13020313 crossref_primary_10_1016_j_celrep_2025_115894 crossref_primary_10_3389_fpsyg_2024_1466722 crossref_primary_10_3390_plants11091217 crossref_primary_10_1016_j_envexpbot_2024_105686 crossref_primary_10_1016_j_ijbiomac_2024_130735 crossref_primary_10_3390_ijms25179347 crossref_primary_10_1007_s11240_024_02837_y crossref_primary_10_1093_plcell_koae245 crossref_primary_10_1111_tpj_70157 crossref_primary_10_1007_s11033_023_08679_9 crossref_primary_10_1016_j_tplants_2023_01_009 crossref_primary_10_1111_tpj_16653 crossref_primary_10_1016_j_cpb_2024_100335 crossref_primary_10_1016_j_hpj_2025_03_001 crossref_primary_10_1016_j_plaphy_2025_110263 crossref_primary_10_3389_fpls_2022_924162 crossref_primary_10_1186_s12870_025_06554_2 crossref_primary_10_1016_j_carbpol_2024_122555 crossref_primary_10_3390_genes14101943 crossref_primary_10_1016_j_ijbiomac_2025_140835 crossref_primary_10_3390_plants11101367 crossref_primary_10_1016_j_plantsci_2023_111822 crossref_primary_10_1186_s12864_025_11795_4 crossref_primary_10_1007_s00344_024_11548_9 crossref_primary_10_1016_j_indcrop_2023_117647 crossref_primary_10_1016_j_plaphy_2024_108926 crossref_primary_10_1186_s12864_025_11566_1 crossref_primary_10_1111_pbi_70346 crossref_primary_10_1007_s00425_024_04544_6 crossref_primary_10_1016_j_jprot_2025_105488 crossref_primary_10_1016_j_scitotenv_2023_165397 crossref_primary_10_1080_15287394_2024_2434656 crossref_primary_10_1111_nph_18549 crossref_primary_10_3389_fpls_2023_1250878 crossref_primary_10_1093_plphys_kiae118 crossref_primary_10_3390_cells12222606 crossref_primary_10_1093_plphys_kiae580 crossref_primary_10_1016_j_plaphy_2025_110019 crossref_primary_10_1111_pce_70038 crossref_primary_10_3390_antiox14060673 crossref_primary_10_3390_ijms232012218 crossref_primary_10_3390_plants14071100 crossref_primary_10_47280_RevFacAgron_LUZ__v42_n3_I crossref_primary_10_1007_s00344_025_11665_z crossref_primary_10_3390_plants12040781 crossref_primary_10_1007_s00709_022_01816_4 crossref_primary_10_1016_j_jhazmat_2024_136068 crossref_primary_10_1016_j_jhazmat_2024_136063 crossref_primary_10_1016_j_plaphy_2025_110496 crossref_primary_10_3390_ijms241511996 crossref_primary_10_48130_vegres_0024_0029 crossref_primary_10_1111_pce_14532 crossref_primary_10_1111_pce_14774 crossref_primary_10_1093_hr_uhae279 crossref_primary_10_1038_s41598_024_80831_2 crossref_primary_10_1016_j_gene_2022_147060 crossref_primary_10_1146_annurev_arplant_070324_041348 crossref_primary_10_3390_f14030486 crossref_primary_10_1186_s12864_025_11433_z crossref_primary_10_3389_fpls_2022_999990 crossref_primary_10_1007_s00425_024_04348_8 crossref_primary_10_1007_s11356_023_30625_2 crossref_primary_10_1016_j_ejbt_2025_07_002 crossref_primary_10_1016_j_hpj_2025_04_004 crossref_primary_10_1016_j_ijbiomac_2024_131804 crossref_primary_10_3390_ijms252111569 crossref_primary_10_3390_agronomy15092145 crossref_primary_10_1038_s41598_024_80261_0 crossref_primary_10_1007_s10722_025_02510_z crossref_primary_10_1007_s00122_023_04523_7 crossref_primary_10_3390_cimb47090754 crossref_primary_10_1038_s42003_025_08077_w crossref_primary_10_1111_pce_70029 crossref_primary_10_3390_ijms25031511 crossref_primary_10_1007_s00299_025_03481_2 crossref_primary_10_1007_s11427_023_2361_1 crossref_primary_10_3389_fpls_2023_1111875 crossref_primary_10_3390_ijms25031754 crossref_primary_10_1093_pcp_pcac071 crossref_primary_10_1111_ppl_13987 crossref_primary_10_3389_fsufs_2022_725656 crossref_primary_10_1016_j_plaphy_2024_108708 crossref_primary_10_1007_s10341_025_01430_7 crossref_primary_10_1111_nph_18526 crossref_primary_10_1007_s11103_025_01566_w crossref_primary_10_1016_j_sajb_2023_10_047 crossref_primary_10_3390_antiox11112225 crossref_primary_10_3390_ijms24021054 crossref_primary_10_3389_fpls_2022_851504 crossref_primary_10_1186_s12870_025_07258_3 crossref_primary_10_3390_genes14122213 crossref_primary_10_3390_ijms24076603 crossref_primary_10_3390_ijms241612668 crossref_primary_10_1111_pce_14509 crossref_primary_10_3390_ijms241914746 crossref_primary_10_1016_j_plantsci_2023_111879 crossref_primary_10_1111_pce_14746 crossref_primary_10_1016_j_jhazmat_2022_130141 crossref_primary_10_3390_ijms231911191 crossref_primary_10_1016_j_jare_2024_09_004 crossref_primary_10_3390_ijms26031157 crossref_primary_10_1016_j_plantsci_2022_111357 crossref_primary_10_1002_ps_7218 crossref_primary_10_1007_s00299_024_03168_0 crossref_primary_10_1111_nph_19209 crossref_primary_10_3390_agronomy12051043 crossref_primary_10_1002_1873_3468_14410 crossref_primary_10_3389_fpls_2024_1492036 crossref_primary_10_3389_fpls_2023_1123436 crossref_primary_10_1093_plphys_kiaf246 crossref_primary_10_1093_plcell_koad192 crossref_primary_10_1111_tpj_16612 crossref_primary_10_7717_peerj_17684 crossref_primary_10_3390_ijms26052095 crossref_primary_10_1111_pbi_70307 crossref_primary_10_1111_tpj_16614 crossref_primary_10_1111_pce_14517 crossref_primary_10_1111_nph_19671 crossref_primary_10_1111_pbi_14605 crossref_primary_10_3389_fpls_2023_1135845 crossref_primary_10_3389_fpls_2025_1642597 crossref_primary_10_1021_acs_jafc_4c06507 crossref_primary_10_3390_horticulturae9010122 crossref_primary_10_1016_j_envexpbot_2023_105373 crossref_primary_10_1371_journal_pone_0319980 crossref_primary_10_3390_ijms242216157 crossref_primary_10_55257_ethabd_1657919 crossref_primary_10_1016_j_stress_2024_100695 crossref_primary_10_3389_fpls_2022_1093589 crossref_primary_10_1016_j_stress_2025_100770 crossref_primary_10_3390_ijms25147714 crossref_primary_10_1016_j_envexpbot_2024_105663 crossref_primary_10_3390_plants13223230 crossref_primary_10_1111_pce_70066 crossref_primary_10_3389_fpls_2023_1187260 crossref_primary_10_1016_j_scienta_2023_112015 crossref_primary_10_3390_ijms25179520 crossref_primary_10_1111_nph_18326 crossref_primary_10_1016_j_scienta_2024_113406 crossref_primary_10_1007_s44154_024_00150_4 crossref_primary_10_1016_j_stress_2025_100761 crossref_primary_10_3389_fpls_2023_1136709 crossref_primary_10_3390_ijms26136008 crossref_primary_10_1093_plcell_koad173 crossref_primary_10_1186_s43897_024_00080_9 crossref_primary_10_1371_journal_pone_0328236 crossref_primary_10_3390_plants13192685 crossref_primary_10_1111_ppl_13702 crossref_primary_10_1007_s42729_025_02421_z crossref_primary_10_1016_j_jia_2024_01_035 crossref_primary_10_1007_s00299_025_03459_0 crossref_primary_10_1016_j_biosystemseng_2023_11_007 crossref_primary_10_3389_fpls_2024_1368909 crossref_primary_10_1016_j_isci_2025_113249 crossref_primary_10_1007_s11676_023_01661_y crossref_primary_10_1111_tpj_16800 crossref_primary_10_1186_s12870_022_03867_4 crossref_primary_10_1371_journal_pone_0324447 crossref_primary_10_3389_fpls_2022_996618 crossref_primary_10_1111_pbi_13946 crossref_primary_10_1111_jipb_13372 crossref_primary_10_1007_s11427_023_2463_y crossref_primary_10_1016_j_ijbiomac_2024_138624 crossref_primary_10_3390_ijms242417276 crossref_primary_10_7235_HORT_20250053 crossref_primary_10_1007_s00299_024_03407_4 crossref_primary_10_3390_horticulturae10030297 crossref_primary_10_1039_D5NH00281H crossref_primary_10_3390_cells14181456 crossref_primary_10_3389_fpls_2024_1326038 crossref_primary_10_1111_ppl_13790 crossref_primary_10_3390_ijms23094659 crossref_primary_10_1111_nph_20225 crossref_primary_10_1186_s12870_024_05831_w crossref_primary_10_3390_plants12050976 crossref_primary_10_3390_life12101634 crossref_primary_10_1016_j_plaphy_2024_109175 crossref_primary_10_3390_genes15081048 crossref_primary_10_3390_life12101633 crossref_primary_10_3390_plants12213667 crossref_primary_10_1016_j_stress_2025_100782 crossref_primary_10_1093_jxb_eraf157 crossref_primary_10_1007_s44154_025_00234_9 crossref_primary_10_1093_pcp_pcae073 crossref_primary_10_3390_agriculture15050443 crossref_primary_10_1016_j_micres_2023_127368 crossref_primary_10_1111_ppl_14416 crossref_primary_10_1016_j_ncrops_2024_100024 crossref_primary_10_1186_s12870_024_04922_y crossref_primary_10_3390_agronomy14020236 crossref_primary_10_1007_s10343_025_01214_9 crossref_primary_10_3390_agronomy12071523 crossref_primary_10_1016_j_scitotenv_2025_180290 crossref_primary_10_3390_ijms241512231 crossref_primary_10_1038_s41598_025_02215_4 crossref_primary_10_1007_s42535_025_01360_5 crossref_primary_10_1038_s41396_022_01288_7 crossref_primary_10_3390_app15073606 crossref_primary_10_1186_s12864_025_11488_y crossref_primary_10_3390_agronomy14122822 crossref_primary_10_1016_j_scitotenv_2024_172116 crossref_primary_10_1371_journal_pone_0325550 crossref_primary_10_3389_fmicb_2024_1359698 crossref_primary_10_3390_plants14050803 crossref_primary_10_1073_pnas_2221863120 crossref_primary_10_1186_s12870_024_05093_6 crossref_primary_10_1016_j_scienta_2024_113835 crossref_primary_10_1016_j_plaphy_2024_109186 crossref_primary_10_1186_s12870_024_05820_z crossref_primary_10_1126_science_abq5735 crossref_primary_10_1093_pcp_pcae082 crossref_primary_10_1073_pnas_2221308120 crossref_primary_10_18311_jeoh_2023_34777 crossref_primary_10_1111_jipb_13392 crossref_primary_10_1186_s12870_024_05524_4 crossref_primary_10_3389_fpls_2023_1156514 crossref_primary_10_3390_agronomy13123060 crossref_primary_10_1016_j_ncrops_2024_100031 crossref_primary_10_1002_advs_202308384 crossref_primary_10_1016_j_ijbiomac_2025_142384 crossref_primary_10_3390_agriculture12122084 crossref_primary_10_1016_j_ijbiomac_2023_125501 crossref_primary_10_3389_fpls_2022_928386 crossref_primary_10_3390_plants12102020 crossref_primary_10_3390_plants12112066 crossref_primary_10_3390_horticulturae10030269 crossref_primary_10_1080_15592324_2023_2217605 crossref_primary_10_3389_fpls_2022_1019169 crossref_primary_10_1016_j_jplph_2024_154239 crossref_primary_10_3390_plants14091327 crossref_primary_10_1016_j_scienta_2024_112993 crossref_primary_10_3389_fpls_2024_1466363 crossref_primary_10_3390_ijms25094957 crossref_primary_10_1016_j_jhazmat_2025_138936 crossref_primary_10_1186_s12864_024_10721_4 crossref_primary_10_1186_s12870_024_05975_9 crossref_primary_10_1016_j_indcrop_2024_118412 crossref_primary_10_1038_s41467_025_61827_6 crossref_primary_10_1186_s12870_024_04966_0 crossref_primary_10_1111_jipb_13386 crossref_primary_10_1016_j_cj_2025_04_012 crossref_primary_10_1111_nph_18190 crossref_primary_10_3390_plants12081666 crossref_primary_10_1016_j_plaphy_2025_110475 crossref_primary_10_3390_agronomy15020268 crossref_primary_10_1002_advs_202415106 crossref_primary_10_1016_j_pedsph_2024_10_007 crossref_primary_10_1016_j_ncrops_2024_100057 crossref_primary_10_1016_j_plaphy_2023_107901 crossref_primary_10_3390_plants12152789 crossref_primary_10_48130_mpb_0025_0018 crossref_primary_10_1016_j_pestbp_2025_106527 crossref_primary_10_1016_j_postharvbio_2022_112131 crossref_primary_10_1007_s00284_022_03012_2 crossref_primary_10_1002_pld3_456 crossref_primary_10_1111_jipb_13575 crossref_primary_10_1080_21645698_2025_2559489 crossref_primary_10_3390_genes14071344 crossref_primary_10_1007_s00344_023_10965_6 crossref_primary_10_1016_j_cj_2022_09_002 crossref_primary_10_1016_j_postharvbio_2022_112140 crossref_primary_10_3389_fpls_2022_918537 crossref_primary_10_3390_plants13233444 crossref_primary_10_3389_fpls_2021_807739 crossref_primary_10_3390_plants11131626 crossref_primary_10_3389_fpls_2023_1321952 crossref_primary_10_3390_su152014792 crossref_primary_10_3390_plants12020292 crossref_primary_10_1016_j_isci_2023_108112 crossref_primary_10_3390_plants14131932 crossref_primary_10_1016_j_molp_2023_09_001 crossref_primary_10_3390_plants14172686 crossref_primary_10_1007_s10340_025_01899_x crossref_primary_10_3389_fpls_2022_1092411 crossref_primary_10_1186_s12870_025_06419_8 crossref_primary_10_3389_fpls_2022_947072 crossref_primary_10_1016_j_plana_2023_100035 crossref_primary_10_1007_s11105_023_01413_6 crossref_primary_10_1021_acs_jafc_4c04734 crossref_primary_10_3389_fpls_2025_1614515 crossref_primary_10_1016_j_ijbiomac_2025_142347 crossref_primary_10_3389_fpls_2022_965745 crossref_primary_10_1016_j_chemosphere_2022_134474 crossref_primary_10_1007_s10725_024_01191_5 crossref_primary_10_3390_plants14172671 crossref_primary_10_1111_tpj_17089 crossref_primary_10_1016_j_ijbiomac_2023_126878 crossref_primary_10_3390_plants14020148 crossref_primary_10_1186_s12870_024_05084_7 crossref_primary_10_1007_s00344_023_11213_7 crossref_primary_10_3390_ijms23179701 crossref_primary_10_1016_j_bbrc_2024_151232 crossref_primary_10_1016_j_plantsci_2022_111509 crossref_primary_10_2478_ebtj_2022_0017 crossref_primary_10_1111_nph_18162 crossref_primary_10_1016_j_jia_2025_09_014 crossref_primary_10_1007_s00344_023_11224_4 crossref_primary_10_3390_ijms23041933 crossref_primary_10_1007_s13562_022_00786_1 crossref_primary_10_1016_j_plantsci_2025_112494 crossref_primary_10_1111_ppl_70521 crossref_primary_10_1186_s12870_025_07065_w crossref_primary_10_32615_ps_2025_011 crossref_primary_10_1111_ppl_14360 crossref_primary_10_1002_advs_202400445 crossref_primary_10_3390_genes14071417 crossref_primary_10_1371_journal_pone_0324724 crossref_primary_10_1038_s41467_024_50229_9 crossref_primary_10_1146_annurev_arplant_083123_090055 crossref_primary_10_1007_s11427_022_2233_x crossref_primary_10_1093_plphys_kiac508 crossref_primary_10_3389_fpls_2023_1291731 crossref_primary_10_1016_j_ijbiomac_2023_123369 crossref_primary_10_1007_s00425_024_04364_8 crossref_primary_10_1111_ppl_14126 crossref_primary_10_1016_j_molp_2023_12_002 crossref_primary_10_1021_acs_jafc_5c00194 crossref_primary_10_3390_molecules28062714 crossref_primary_10_1038_s41598_023_40694_5 crossref_primary_10_17221_136_2023_HORTSCI crossref_primary_10_1007_s00299_025_03565_z crossref_primary_10_1016_j_heliyon_2023_e21650 crossref_primary_10_3390_genes16030287 crossref_primary_10_3390_ijms24032442 crossref_primary_10_1002_ps_6733 crossref_primary_10_3390_horticulturae11040347 crossref_primary_10_1016_j_ijbiomac_2023_125691 crossref_primary_10_1186_s12284_022_00614_z crossref_primary_10_3390_stresses2010009 crossref_primary_10_3390_genes13101841 crossref_primary_10_3390_ijms241310641 crossref_primary_10_1016_j_scienta_2025_114323 crossref_primary_10_1093_jxb_erad280 crossref_primary_10_1016_j_bbrc_2024_150693 crossref_primary_10_3390_ijms24032209 crossref_primary_10_3390_cimb46090634 crossref_primary_10_1186_s12870_024_05798_8 crossref_primary_10_1093_treephys_tpaf043 crossref_primary_10_1007_s10343_024_01013_8 crossref_primary_10_1007_s10725_022_00905_x crossref_primary_10_1016_j_tibs_2024_02_002 crossref_primary_10_1016_j_sajb_2023_07_057 crossref_primary_10_1016_j_wace_2024_100692 crossref_primary_10_1111_pce_15061 crossref_primary_10_1038_s41598_023_42428_z crossref_primary_10_3390_ijms242015498 crossref_primary_10_3390_ijms25021178 crossref_primary_10_1111_tpj_16075 crossref_primary_10_1016_j_plaphy_2024_109353 crossref_primary_10_1016_j_ijbiomac_2025_141590 crossref_primary_10_1111_nph_70464 crossref_primary_10_3389_fpls_2023_1143963 crossref_primary_10_3390_plants11162097 crossref_primary_10_1016_j_scienta_2024_112911 crossref_primary_10_1093_jxb_erae128 crossref_primary_10_1016_j_jgg_2024_04_005 crossref_primary_10_3389_fpls_2022_853110 crossref_primary_10_3390_plants13131739 crossref_primary_10_1007_s00425_024_04486_z crossref_primary_10_1002_wrna_1758 crossref_primary_10_3390_genes16070765 crossref_primary_10_3390_phycology5030028 crossref_primary_10_1186_s12870_025_06383_3 crossref_primary_10_3389_fpls_2023_1131735 crossref_primary_10_3390_ijms26030896 crossref_primary_10_1016_j_devcel_2024_12_036 crossref_primary_10_1016_j_plaphy_2025_109819 crossref_primary_10_1016_j_csr_2025_105573 crossref_primary_10_1016_j_jia_2023_09_018 crossref_primary_10_1111_jipb_13544 crossref_primary_10_3390_ijms26041780 crossref_primary_10_1016_j_jes_2025_07_013 crossref_primary_10_3390_ijms222312619 crossref_primary_10_3390_ijms24098079 crossref_primary_10_1111_tpj_17133 crossref_primary_10_3389_fpls_2023_1279896 crossref_primary_10_24326_asphc_2025_5509 crossref_primary_10_3390_ijms25010250 crossref_primary_10_1016_j_ijbiomac_2024_131477 crossref_primary_10_1038_s41598_023_33581_6 crossref_primary_10_1007_s10343_023_00882_9 crossref_primary_10_3390_genes14020270 crossref_primary_10_17221_88_2023_CJGPB crossref_primary_10_1093_plphys_kiac549 crossref_primary_10_1038_s41467_023_40773_1 crossref_primary_10_3389_fpls_2025_1533248 crossref_primary_10_3390_plants12020305 crossref_primary_10_1016_j_ijbiomac_2022_11_197 crossref_primary_10_1371_journal_pone_0296254 crossref_primary_10_3390_ijms252312748 crossref_primary_10_1371_journal_pone_0319176 crossref_primary_10_1007_s44154_024_00159_9 crossref_primary_10_1146_annurev_phyto_121423_042128 crossref_primary_10_1021_acs_jafc_4c11778 crossref_primary_10_3390_ijms23137045 crossref_primary_10_3390_cimb47030195 crossref_primary_10_1016_j_bbrc_2023_08_031 crossref_primary_10_1186_s12870_022_03884_3 crossref_primary_10_3389_fpls_2023_1334620 crossref_primary_10_3390_horticulturae11080960 crossref_primary_10_3390_biom13101443 crossref_primary_10_3390_horticulturae8111087 crossref_primary_10_1016_j_ijbiomac_2023_126582 crossref_primary_10_3390_ijms26030879 crossref_primary_10_1016_j_envexpbot_2025_106224 crossref_primary_10_1111_tpj_16052 crossref_primary_10_1016_j_plaphy_2024_108451 crossref_primary_10_1186_s12870_024_05598_0 crossref_primary_10_3389_fpls_2022_807844 crossref_primary_10_1073_pnas_2423037122 crossref_primary_10_1111_jipb_13756 crossref_primary_10_3390_ijms24043388 crossref_primary_10_3390_plants12020331 crossref_primary_10_1186_s12284_025_00800_9 crossref_primary_10_1093_treephys_tpaf004 crossref_primary_10_1007_s00344_024_11249_3 crossref_primary_10_3389_fpls_2024_1396634 crossref_primary_10_1007_s10528_024_10845_y crossref_primary_10_1186_s12864_025_11858_6 crossref_primary_10_1002_anie_202400531 crossref_primary_10_1007_s00114_025_02013_y crossref_primary_10_1016_j_jgg_2024_03_007 crossref_primary_10_1016_j_plaphy_2024_108456 crossref_primary_10_1016_j_plaphy_2024_109302 crossref_primary_10_1007_s00284_024_03752_3 crossref_primary_10_1111_ppl_70255 crossref_primary_10_1111_ppl_70492 crossref_primary_10_1111_jipb_13504 crossref_primary_10_1002_ange_202400531 crossref_primary_10_1093_jxb_eraf253 crossref_primary_10_1186_s12864_024_10546_1 crossref_primary_10_3390_ijms25169045 crossref_primary_10_1007_s00425_022_03858_7 crossref_primary_10_1016_j_jplph_2025_154570 crossref_primary_10_3389_fpls_2023_1246964 crossref_primary_10_1016_j_ijbiomac_2024_134950 crossref_primary_10_3389_fmicb_2022_986401 crossref_primary_10_1093_jxb_erae165 crossref_primary_10_3390_plants14132062 crossref_primary_10_1016_j_jplph_2022_153827 crossref_primary_10_3389_fpls_2024_1337250 crossref_primary_10_3390_ijms252413383 crossref_primary_10_3389_fgene_2022_909007 crossref_primary_10_1186_s12870_024_05443_4 crossref_primary_10_3389_fmicb_2023_1210890 crossref_primary_10_1016_j_freeradbiomed_2024_09_043 crossref_primary_10_1016_j_envint_2024_109150 crossref_primary_10_1016_j_plaphy_2025_109857 crossref_primary_10_1111_pce_15271 crossref_primary_10_1038_s41477_025_01952_8 crossref_primary_10_3390_horticulturae11080985 crossref_primary_10_3390_ijms25042046 crossref_primary_10_3390_plants13152040 crossref_primary_10_1093_plphys_kiae520 crossref_primary_10_1007_s10343_025_01121_z crossref_primary_10_1007_s11033_023_09042_8 crossref_primary_10_1016_j_jplph_2023_153997 crossref_primary_10_3390_plants13213082 crossref_primary_10_1093_treephys_tpad001 crossref_primary_10_3390_ijms24065990 crossref_primary_10_3390_biom14020227 crossref_primary_10_1016_j_plantsci_2025_112646 crossref_primary_10_1093_hr_uhae333 crossref_primary_10_1111_pce_15240 crossref_primary_10_1038_s41467_024_47082_1 crossref_primary_10_1111_pbi_70173 crossref_primary_10_3390_plants12051023 crossref_primary_10_1134_S1021443723602008 crossref_primary_10_1007_s12041_023_01456_4 crossref_primary_10_1007_s42535_024_00821_7 crossref_primary_10_1016_j_pmpp_2025_102664 crossref_primary_10_1093_jxb_erad414 crossref_primary_10_3390_genes15070948 crossref_primary_10_1007_s11103_023_01403_y crossref_primary_10_1016_j_jhazmat_2025_137265 crossref_primary_10_3390_plants14071038 crossref_primary_10_3390_ijms25010465 crossref_primary_10_1111_pbi_70189 crossref_primary_10_1080_00103624_2024_2377625 crossref_primary_10_1016_j_stress_2024_100605 crossref_primary_10_1007_s11104_025_07373_y crossref_primary_10_1038_s41477_025_01974_2 crossref_primary_10_3389_fpls_2023_1212073 crossref_primary_10_1016_j_plantsci_2025_112631 crossref_primary_10_1093_hr_uhae320 crossref_primary_10_3390_ijms23074016 crossref_primary_10_3390_ijms24098439 crossref_primary_10_1016_j_plaphy_2024_108642 crossref_primary_10_3390_ijms25063306 crossref_primary_10_1007_s00299_025_03496_9 crossref_primary_10_1016_j_envexpbot_2023_105414 crossref_primary_10_3389_fgene_2024_1521062 crossref_primary_10_1111_jipb_13956 crossref_primary_10_1111_pbi_14016 crossref_primary_10_1093_jxb_erad205 crossref_primary_10_1093_treephys_tpae111 crossref_primary_10_1186_s12284_025_00777_5 crossref_primary_10_3389_fpls_2022_972635 crossref_primary_10_1007_s11033_025_10597_x crossref_primary_10_3390_plants14071072 crossref_primary_10_1007_s12374_022_09370_5 crossref_primary_10_1093_hr_uhad221 crossref_primary_10_3390_ijms23105666 crossref_primary_10_7717_peerj_13429 crossref_primary_10_1016_j_envexpbot_2022_105141 crossref_primary_10_1007_s11738_024_03733_w crossref_primary_10_1007_s11694_025_03520_2 crossref_primary_10_1371_journal_pone_0292076 crossref_primary_10_1016_j_celrep_2024_114786 crossref_primary_10_3389_fpls_2025_1590484 crossref_primary_10_3390_stresses5010023 crossref_primary_10_1016_j_apsb_2023_08_011 crossref_primary_10_1093_pcp_pcac114 crossref_primary_10_3390_ijms25179289 crossref_primary_10_1016_j_heliyon_2024_e34152 crossref_primary_10_3390_ijms252212188 crossref_primary_10_1515_biol_2025_1103 crossref_primary_10_3390_f14061196 crossref_primary_10_3390_ijms26094269 crossref_primary_10_3390_atmos15030363 crossref_primary_10_3390_plants12091910 crossref_primary_10_1016_j_hpj_2025_06_005 crossref_primary_10_1016_j_plaphy_2024_108423 crossref_primary_10_1007_s10725_024_01163_9 crossref_primary_10_1016_j_postharvbio_2024_113338 crossref_primary_10_1016_j_jconrel_2024_11_028 crossref_primary_10_1016_j_jia_2024_03_067 crossref_primary_10_1093_jxb_erad464 crossref_primary_10_1111_nph_70497 crossref_primary_10_3390_horticulturae11050515 crossref_primary_10_3390_plants13071033 crossref_primary_10_1016_j_jgg_2023_08_007 crossref_primary_10_1016_j_jksus_2024_103575 crossref_primary_10_3390_ijms242216415 crossref_primary_10_1016_j_scienta_2025_114302 crossref_primary_10_1016_j_envexpbot_2024_105918 crossref_primary_10_1111_pbi_70134 crossref_primary_10_1038_s41576_024_00710_4 crossref_primary_10_1007_s00299_024_03333_5 crossref_primary_10_1007_s40626_024_00338_z crossref_primary_10_3389_fpls_2022_925863 crossref_primary_10_1093_hr_uhac198 crossref_primary_10_1093_plphys_kiae325 crossref_primary_10_3390_antiox14050602 crossref_primary_10_1016_j_plaphy_2023_108313 crossref_primary_10_1016_j_hpj_2025_08_006 crossref_primary_10_1093_plphys_kiae327 crossref_primary_10_1111_pbi_70371 crossref_primary_10_3390_horticulturae9091025 crossref_primary_10_3390_genes15111482 crossref_primary_10_1016_j_plaphy_2023_107692 crossref_primary_10_1134_S1021443725600448 crossref_primary_10_1134_S1021443723601350 crossref_primary_10_3390_agriculture14081212 crossref_primary_10_3390_ijms25179261 crossref_primary_10_3390_horticulturae11070773 crossref_primary_10_1016_j_eti_2024_103544 crossref_primary_10_3389_fpls_2022_822618 crossref_primary_10_1007_s00299_025_03574_y crossref_primary_10_1007_s42979_023_02076_6 crossref_primary_10_1016_j_fnutr_2025_100016 crossref_primary_10_3389_fpls_2024_1349401 crossref_primary_10_3389_fpls_2024_1471044 crossref_primary_10_3389_fpls_2025_1629794 crossref_primary_10_52711_0975_4385_2025_00001 crossref_primary_10_1038_s41477_023_01480_3 crossref_primary_10_1111_tpj_70389 crossref_primary_10_1080_15592324_2025_2479513 crossref_primary_10_1007_s11274_023_03837_4 crossref_primary_10_1111_tpj_16420 crossref_primary_10_1080_15592324_2024_2391134 crossref_primary_10_3390_plants13152064 crossref_primary_10_1007_s44154_024_00188_4 crossref_primary_10_3390_horticulturae11010044 crossref_primary_10_3390_ijms24032401 crossref_primary_10_1371_journal_pone_0323613 crossref_primary_10_1016_j_indcrop_2025_120567 crossref_primary_10_1016_j_scienta_2024_113114 crossref_primary_10_1016_j_pld_2024_07_009 crossref_primary_10_1007_s13580_024_00659_7 crossref_primary_10_1016_j_stress_2024_100613 crossref_primary_10_1093_hr_uhac174 crossref_primary_10_3390_ijms25052470 crossref_primary_10_1093_hr_uhac171 crossref_primary_10_1016_j_gene_2024_149085 crossref_primary_10_1093_plphys_kiae545 crossref_primary_10_3390_genes13030486 crossref_primary_10_1073_pnas_2302901120 crossref_primary_10_1186_s12302_023_00788_3 crossref_primary_10_1002_ldr_5011 crossref_primary_10_1007_s10725_024_01176_4 crossref_primary_10_3390_ijms232314501 crossref_primary_10_1007_s42994_023_00101_z crossref_primary_10_1016_j_indcrop_2025_121641 crossref_primary_10_1111_jipb_13906 crossref_primary_10_1093_aobpla_plad005 crossref_primary_10_1093_jxb_erad477 crossref_primary_10_1111_ppl_14195 crossref_primary_10_3389_fevo_2023_1113823 crossref_primary_10_3389_fpls_2024_1515944 crossref_primary_10_3390_f13101689 crossref_primary_10_3389_fpls_2022_969896 crossref_primary_10_1016_j_envexpbot_2025_106088 crossref_primary_10_1016_j_gene_2024_149076 crossref_primary_10_3389_fpls_2023_1132198 crossref_primary_10_3390_plants14192954 crossref_primary_10_1093_plphys_kiad202 crossref_primary_10_3390_plants14152292 crossref_primary_10_3390_ijms242216450 crossref_primary_10_3390_ijms252111437 crossref_primary_10_1111_tpj_16761 crossref_primary_10_1016_j_plaphy_2022_07_022 crossref_primary_10_3389_fpls_2022_1105598 crossref_primary_10_3389_fpls_2022_870586 crossref_primary_10_1016_j_molp_2022_06_008 crossref_primary_10_3390_plants14162582 crossref_primary_10_1007_s11105_025_01563_9 crossref_primary_10_1016_j_stress_2025_100834 crossref_primary_10_3389_fpls_2022_1025122 crossref_primary_10_3389_fpls_2023_1182977 crossref_primary_10_3389_fpls_2022_940540 crossref_primary_10_1002_fsn3_4765 crossref_primary_10_1016_j_cell_2023_11_038 crossref_primary_10_1016_j_foodres_2024_114031 crossref_primary_10_3389_fpls_2023_1302046 crossref_primary_10_3390_ijms232314845 crossref_primary_10_1016_j_xplc_2025_101487 crossref_primary_10_1016_j_indcrop_2023_116688 crossref_primary_10_1016_j_plaphy_2022_07_027 crossref_primary_10_1016_j_ijbiomac_2025_145399 crossref_primary_10_3390_nano13192684 crossref_primary_10_3390_plants14152303 crossref_primary_10_1111_pbi_14526 crossref_primary_10_3390_ijms23115957 crossref_primary_10_1093_aobpla_plae034 crossref_primary_10_3390_antiox14091067 crossref_primary_10_1038_s44264_024_00026_0 crossref_primary_10_3389_fpls_2024_1438811 crossref_primary_10_1038_s42003_025_07857_8 crossref_primary_10_7554_eLife_99352_3 crossref_primary_10_1016_j_ijbiomac_2025_139971 crossref_primary_10_1016_j_foodchem_2024_141100 crossref_primary_10_1016_j_indcrop_2023_116679 crossref_primary_10_1186_s12870_024_05059_8 crossref_primary_10_1186_s12864_024_10036_4 crossref_primary_10_3390_plants11091100 crossref_primary_10_1016_j_plaphy_2025_110380 crossref_primary_10_3390_agriculture14010080 crossref_primary_10_1016_j_envexpbot_2024_105797 crossref_primary_10_3390_ijms25042305 crossref_primary_10_1016_j_plaphy_2023_01_005 crossref_primary_10_3390_biology11050678 crossref_primary_10_3389_fpls_2023_1146663 crossref_primary_10_1080_15592324_2025_2451700 crossref_primary_10_1111_tpj_16984 crossref_primary_10_3390_ijms232415552 crossref_primary_10_1007_s11686_024_00977_x crossref_primary_10_1007_s13744_024_01221_x crossref_primary_10_1093_hr_uhae157 crossref_primary_10_1016_j_hpj_2024_02_011 crossref_primary_10_1186_s13059_024_03408_2 crossref_primary_10_1007_s11103_025_01598_2 crossref_primary_10_1093_plphys_kiad136 crossref_primary_10_3390_plants14121803 crossref_primary_10_3390_f14091784 crossref_primary_10_3390_ijms232113027 crossref_primary_10_3390_plants14091289 crossref_primary_10_1016_j_bios_2023_115300 crossref_primary_10_3390_ijms24129793 crossref_primary_10_1111_pbi_14305 crossref_primary_10_3390_ijms25179686 crossref_primary_10_1111_nph_18644 crossref_primary_10_1016_j_jare_2024_11_019 crossref_primary_10_1007_s10725_025_01339_x crossref_primary_10_3390_ijms25105199 crossref_primary_10_3389_fpls_2022_857396 crossref_primary_10_1016_j_plaphy_2025_110365 crossref_primary_10_3390_biom15081103 crossref_primary_10_1111_pce_15504 crossref_primary_10_1146_annurev_arplant_070122_030236 crossref_primary_10_1371_journal_pone_0318757 crossref_primary_10_1093_hr_uhad051 crossref_primary_10_3390_plants14162568 crossref_primary_10_1016_j_molp_2022_06_001 crossref_primary_10_3390_ijms241411828 crossref_primary_10_3390_ijms25147626 crossref_primary_10_3390_biology12020217 crossref_primary_10_1002_jsfa_70032 crossref_primary_10_1016_j_molp_2022_06_003 crossref_primary_10_3390_cells11132039 crossref_primary_10_1002_advs_202417212 crossref_primary_10_3390_f13111835 crossref_primary_10_1111_nph_18647 crossref_primary_10_1186_s12864_024_11065_9 crossref_primary_10_1186_s43897_023_00073_0 crossref_primary_10_1016_j_rsci_2023_10_002 crossref_primary_10_1038_s41467_024_49844_3 crossref_primary_10_3390_agronomy15071570 crossref_primary_10_1016_j_biotechadv_2025_108691 crossref_primary_10_1038_s41467_023_43177_3 crossref_primary_10_1016_j_plaphy_2024_109086 crossref_primary_10_3390_ijms24076727 crossref_primary_10_1007_s00425_023_04141_z crossref_primary_10_3389_fpls_2023_1248476 crossref_primary_10_3390_ijms252010937 crossref_primary_10_1186_s12870_024_04916_w crossref_primary_10_1016_j_plaphy_2025_110191 crossref_primary_10_3390_agronomy13030728 crossref_primary_10_3390_ijms24065822 crossref_primary_10_1016_j_envexpbot_2024_105763 crossref_primary_10_1093_jxb_erac418 crossref_primary_10_3390_ijms26083792 crossref_primary_10_1007_s42729_025_02433_9 crossref_primary_10_3390_agronomy14122995 crossref_primary_10_3390_cells14030176 crossref_primary_10_1080_07388551_2023_2299766 crossref_primary_10_1016_j_jenvman_2023_119488 crossref_primary_10_3390_f14020383 crossref_primary_10_1111_nph_19552 crossref_primary_10_1016_j_envexpbot_2024_105988 crossref_primary_10_1016_j_envexpbot_2024_105989 crossref_primary_10_1002_cbdv_202200247 crossref_primary_10_1007_s00299_023_03087_6 crossref_primary_10_1186_s43897_025_00169_9 crossref_primary_10_3390_plants13101345 crossref_primary_10_1016_j_plaphy_2025_110189 crossref_primary_10_1016_j_scienta_2023_112594 crossref_primary_10_1007_s10725_023_00992_4 crossref_primary_10_3389_fpls_2022_1026421 crossref_primary_10_1021_acssensors_5c01494 crossref_primary_10_1016_j_envexpbot_2022_105190 crossref_primary_10_3390_genes15070870 crossref_primary_10_1016_j_ygeno_2024_110926 crossref_primary_10_1038_s41477_024_01700_4 crossref_primary_10_3389_fpls_2023_1155797 crossref_primary_10_3390_ijms252010952 crossref_primary_10_1007_s44372_025_00346_6 crossref_primary_10_1093_plphys_kiaf126 crossref_primary_10_1016_j_plaphy_2023_107854 crossref_primary_10_3389_fpls_2022_981029 crossref_primary_10_1111_nph_19787 crossref_primary_10_3390_horticulturae9070731 crossref_primary_10_3390_ijms23042085 crossref_primary_10_1016_j_stress_2025_100893 crossref_primary_10_3390_ijms241914406 crossref_primary_10_1134_S1062359024610942 crossref_primary_10_1080_15592324_2023_2241165 crossref_primary_10_1098_rstb_2024_0252 crossref_primary_10_1016_j_molp_2024_08_006 crossref_primary_10_1016_j_cbpa_2024_111610 crossref_primary_10_3390_ijms23147988 crossref_primary_10_3390_plants11182444 crossref_primary_10_1111_nph_18217 crossref_primary_10_1016_j_cej_2024_153913 crossref_primary_10_3390_su17177602 crossref_primary_10_1016_j_envexpbot_2024_105782 crossref_primary_10_1007_s00299_024_03278_9 crossref_primary_10_1093_plphys_kiae497 crossref_primary_10_1016_j_bcab_2023_102677 crossref_primary_10_3389_fgene_2022_842868 crossref_primary_10_1016_j_envexpbot_2024_105769 crossref_primary_10_3390_ijms231810570 crossref_primary_10_3390_plants11091172 crossref_primary_10_1007_s42729_024_01956_x crossref_primary_10_1016_j_bbrc_2025_152581 crossref_primary_10_1093_hr_uhae181 crossref_primary_10_1007_s11103_025_01630_5 crossref_primary_10_3389_fpls_2022_859374 crossref_primary_10_3390_plants14081215 crossref_primary_10_1098_rstb_2024_0241 crossref_primary_10_1021_acssensors_5c00184 crossref_primary_10_1007_s44154_022_00050_5 crossref_primary_10_1016_j_envexpbot_2024_105774 crossref_primary_10_3390_agronomy13071691 crossref_primary_10_1016_j_plantsci_2025_112772 crossref_primary_10_1016_j_cell_2025_07_027 crossref_primary_10_1093_plphys_kiaf105 crossref_primary_10_1016_j_snb_2025_137456 crossref_primary_10_1038_s41598_024_58161_0 crossref_primary_10_3390_plants13020201 crossref_primary_10_1016_j_cj_2024_12_020 crossref_primary_10_1016_j_cub_2023_10_028 crossref_primary_10_1111_nph_20355 crossref_primary_10_1007_s10343_025_01128_6 crossref_primary_10_3389_fgene_2024_1394091 crossref_primary_10_1007_s11032_024_01518_0 crossref_primary_10_3390_genes15060693 crossref_primary_10_3390_ijms251910589 crossref_primary_10_1093_plcell_koae193 crossref_primary_10_1007_s11103_024_01417_0 crossref_primary_10_1016_j_heliyon_2024_e26099 crossref_primary_10_3390_plants12152865 crossref_primary_10_3390_ijms25168717 crossref_primary_10_3389_fpls_2024_1456414 crossref_primary_10_3389_fpls_2022_968714 crossref_primary_10_1093_gbe_evaf056 crossref_primary_10_3390_plants12071532 crossref_primary_10_1016_j_indcrop_2023_117375 crossref_primary_10_1111_ppl_70214 crossref_primary_10_1016_j_plaphy_2025_109568 crossref_primary_10_1016_j_plaphy_2025_110307 crossref_primary_10_1111_nph_19357 crossref_primary_10_32604_phyton_2024_047739 crossref_primary_10_3389_fpls_2022_986365 crossref_primary_10_1093_jxb_eraf277 crossref_primary_10_3389_fpls_2022_870970 crossref_primary_10_3390_agronomy13071877 crossref_primary_10_3390_plants12233975 crossref_primary_10_1111_ppl_13689 crossref_primary_10_1186_s12870_024_05028_1 crossref_primary_10_1007_s00344_024_11473_x crossref_primary_10_1007_s11104_025_07892_8 crossref_primary_10_1093_gigascience_giad053 crossref_primary_10_1016_j_postharvbio_2025_113819 crossref_primary_10_1016_j_jprot_2025_105526 crossref_primary_10_3390_horticulturae8080743 crossref_primary_10_1016_j_heliyon_2024_e32310 crossref_primary_10_1016_j_pbi_2024_102662 crossref_primary_10_1016_j_indcrop_2023_116278 crossref_primary_10_3390_ijms23094769 crossref_primary_10_1007_s00344_023_11082_0 crossref_primary_10_1016_j_gene_2025_149609 crossref_primary_10_3389_fpls_2022_1066088 crossref_primary_10_1111_tpj_16901 crossref_primary_10_3390_plants13050710 crossref_primary_10_3390_f15010125 crossref_primary_10_7554_eLife_99352 crossref_primary_10_3390_ijms26051982 crossref_primary_10_1038_s41467_023_41657_0 crossref_primary_10_1186_s12870_023_04674_1 crossref_primary_10_1016_j_indcrop_2024_119854 crossref_primary_10_3389_fpls_2024_1387575 crossref_primary_10_1016_j_ijbiomac_2025_144687 crossref_primary_10_1038_s41598_024_61907_5 crossref_primary_10_1093_molbev_msae099 crossref_primary_10_3389_fpls_2022_1062952 crossref_primary_10_1038_s41586_024_07445_6 crossref_primary_10_3390_ijms241310915 crossref_primary_10_3389_fgene_2024_1401011 crossref_primary_10_1038_s41598_025_93421_7 crossref_primary_10_3390_ijms252211891 crossref_primary_10_1016_j_cj_2024_04_008 crossref_primary_10_1111_pce_14818 crossref_primary_10_3390_ijms252211896 crossref_primary_10_3390_ijms232415721 crossref_primary_10_1007_s12268_025_2486_9 crossref_primary_10_1016_j_scienta_2025_114031 crossref_primary_10_1111_jipb_13260 crossref_primary_10_1186_s12864_025_11585_y crossref_primary_10_3390_genes14071471 crossref_primary_10_1016_j_plantsci_2024_112035 crossref_primary_10_1016_j_plantsci_2024_112032 crossref_primary_10_3390_plants13020245 crossref_primary_10_1007_s10725_024_01248_5 crossref_primary_10_3390_ijms25073941 crossref_primary_10_1016_j_ijbiomac_2022_12_150 crossref_primary_10_1021_acs_jafc_4c10038 crossref_primary_10_3390_ijms231911477 crossref_primary_10_1016_j_csbj_2023_10_024 crossref_primary_10_3389_fpls_2023_1121780 crossref_primary_10_3390_plants12213755 crossref_primary_10_3390_f15010138 crossref_primary_10_3390_plants13010046 crossref_primary_10_1007_s00425_023_04292_z crossref_primary_10_3389_fpls_2022_974598 crossref_primary_10_3390_horticulturae9080921 crossref_primary_10_1016_j_cpb_2024_100410 crossref_primary_10_1016_j_jenvman_2025_125423 crossref_primary_10_3389_fpls_2022_845107 crossref_primary_10_3389_fpls_2022_979801 crossref_primary_10_1111_jipb_13457 crossref_primary_10_1080_07388551_2023_2165900 crossref_primary_10_1111_jipb_13451 crossref_primary_10_1016_j_sajb_2022_04_045 crossref_primary_10_3390_plants13070994 crossref_primary_10_3390_plants13131831 crossref_primary_10_1016_j_plaphy_2025_109594 crossref_primary_10_1016_j_ecoenv_2023_115214 crossref_primary_10_3389_fpls_2025_1626844 crossref_primary_10_1093_jxb_eraf079 crossref_primary_10_1016_j_plantsci_2023_111900 crossref_primary_10_3390_plants11212858 crossref_primary_10_1038_s41467_023_36129_4 crossref_primary_10_3390_ijms26062603 crossref_primary_10_1016_j_envpol_2022_120658 crossref_primary_10_1007_s00344_023_11103_y crossref_primary_10_3389_fgene_2023_1201535 crossref_primary_10_3389_fpls_2022_905348 crossref_primary_10_1016_j_rhisph_2024_100987 crossref_primary_10_1111_ppl_70429 crossref_primary_10_1016_j_plantsci_2024_112294 crossref_primary_10_1186_s12870_025_06680_x crossref_primary_10_1186_s40168_025_02154_2 crossref_primary_10_1186_s12870_023_04563_7 crossref_primary_10_3390_plants14020294 crossref_primary_10_1016_j_plaphy_2025_109587 crossref_primary_10_3389_fpls_2025_1602440 crossref_primary_10_1007_s00425_025_04707_z crossref_primary_10_3390_genes13101803 crossref_primary_10_3390_ijms241914802 crossref_primary_10_1038_s41564_024_01720_y crossref_primary_10_3390_plants11212877 crossref_primary_10_1007_s42729_024_01793_y crossref_primary_10_3389_fpls_2022_1042084 crossref_primary_10_1093_treephys_tpaf083 crossref_primary_10_1186_s12870_023_04112_2 crossref_primary_10_3390_w15010194 crossref_primary_10_1016_j_plaphy_2024_109269 crossref_primary_10_1021_acs_jafc_5c01237 crossref_primary_10_1186_s12864_024_10844_8 crossref_primary_10_1016_j_plaphy_2024_109034 crossref_primary_10_3390_ijms251810093 crossref_primary_10_1016_j_plaphy_2025_109574 crossref_primary_10_3390_biology14091293 crossref_primary_10_1016_j_plaphy_2025_110326 crossref_primary_10_1007_s10725_024_01237_8 crossref_primary_10_1186_s12870_024_05876_x crossref_primary_10_1038_s41598_025_13827_1 crossref_primary_10_3389_fpls_2024_1436651 crossref_primary_10_1007_s42729_024_01936_1 crossref_primary_10_1093_jxb_eraf099 crossref_primary_10_3389_fpls_2024_1450936 crossref_primary_10_1007_s40502_024_00818_z crossref_primary_10_3390_ijms25137196 crossref_primary_10_3389_fpls_2024_1489380 crossref_primary_10_3390_agriculture15030318 crossref_primary_10_3390_ijms23094542 crossref_primary_10_3390_agronomy14010134 crossref_primary_10_1016_j_ygeno_2024_110981 crossref_primary_10_1016_j_heliyon_2023_e13536 crossref_primary_10_1016_j_ijbiomac_2025_140053 crossref_primary_10_1186_s40538_025_00839_2 crossref_primary_10_1111_jipb_13417 crossref_primary_10_17221_83_2024_PPS crossref_primary_10_3390_ijms23116017 crossref_primary_10_1017_S1742170523000297 crossref_primary_10_3389_fpls_2023_1161245 crossref_primary_10_1094_MPMI_11_21_0281_FI crossref_primary_10_3389_fpls_2023_1149114 crossref_primary_10_3389_fpls_2025_1527952 crossref_primary_10_1093_jxb_erae232 crossref_primary_10_1111_nph_70571 crossref_primary_10_1186_s12870_024_05982_w crossref_primary_10_2478_fhort_2022_0005 crossref_primary_10_1111_ppl_14007 crossref_primary_10_3390_ijms26052333 crossref_primary_10_1016_j_stress_2025_101006 crossref_primary_10_1016_j_plaphy_2025_109967 crossref_primary_10_1111_ppl_14487 crossref_primary_10_1002_adbi_202400589 crossref_primary_10_1007_s00425_023_04237_6 crossref_primary_10_1016_j_plaphy_2024_109450 crossref_primary_10_3390_plants13212962 crossref_primary_10_1186_s12870_025_06132_6 crossref_primary_10_1016_j_scienta_2025_114214 crossref_primary_10_1186_s12870_023_04639_4 crossref_primary_10_3389_fpls_2025_1635078 crossref_primary_10_3390_plants14142162 crossref_primary_10_1007_s13562_021_00751_4 crossref_primary_10_1016_j_jplph_2025_154430 crossref_primary_10_1111_jac_70093 crossref_primary_10_3390_ijms26167790 crossref_primary_10_1016_j_indcrop_2025_120806 crossref_primary_10_1186_s12951_024_02500_w crossref_primary_10_1016_j_envexpbot_2024_106081 crossref_primary_10_3390_cimb47060421 crossref_primary_10_1111_ppl_14015 crossref_primary_10_1111_jipb_13882 crossref_primary_10_3389_fpls_2022_1089109 crossref_primary_10_3390_genes14040811 crossref_primary_10_3390_plants14142191 crossref_primary_10_3390_cells11192935 crossref_primary_10_1111_ppl_70162 crossref_primary_10_3389_fpls_2023_1307390 crossref_primary_10_3390_agronomy14092043 crossref_primary_10_1016_j_foodchem_2024_138722 crossref_primary_10_1093_jxb_erac073 crossref_primary_10_1093_jxb_erad161 crossref_primary_10_3389_fpls_2023_1068296 crossref_primary_10_3390_ijms25116226 crossref_primary_10_1007_s10725_023_01067_0 crossref_primary_10_1007_s10681_022_03102_z crossref_primary_10_1016_j_plaphy_2025_109705 crossref_primary_10_1111_jipb_13677 crossref_primary_10_1016_j_cj_2023_05_002 crossref_primary_10_1111_aab_70049 crossref_primary_10_1016_j_cj_2023_05_005 crossref_primary_10_1111_tpj_16183 crossref_primary_10_3390_agronomy14102368 crossref_primary_10_1016_j_scitotenv_2024_171433 crossref_primary_10_1016_j_chemosphere_2023_139230 crossref_primary_10_1007_s11356_023_27362_x crossref_primary_10_1016_j_cej_2025_165545 crossref_primary_10_3389_fpls_2023_1175878 crossref_primary_10_3390_ijms241310534 crossref_primary_10_1016_j_ijbiomac_2023_128617 crossref_primary_10_1016_j_plaphy_2024_108384 crossref_primary_10_7717_peerj_19487 crossref_primary_10_3390_life13041056 crossref_primary_10_3390_plants13081151 crossref_primary_10_3390_ijms23179737 crossref_primary_10_1016_j_stress_2025_101017 crossref_primary_10_3390_life14010161 crossref_primary_10_1111_pce_15198 crossref_primary_10_1111_jipb_13662 crossref_primary_10_1111_ppl_14277 crossref_primary_10_3390_plants13131861 crossref_primary_10_1016_j_plaphy_2023_108030 crossref_primary_10_1016_j_talanta_2023_124402 crossref_primary_10_3389_fpls_2025_1547526 crossref_primary_10_3390_plants14020218 crossref_primary_10_1111_tpj_17258 crossref_primary_10_3390_ijms231710015 crossref_primary_10_3390_foods13060887 crossref_primary_10_1016_j_indcrop_2022_115828 crossref_primary_10_1093_jxb_eraf124 crossref_primary_10_1007_s42729_022_01090_6 crossref_primary_10_1016_j_jplph_2025_154487 crossref_primary_10_1016_j_agwat_2024_108965 crossref_primary_10_1016_j_ijbiomac_2025_143615 crossref_primary_10_3389_fpls_2024_1391051 crossref_primary_10_1016_j_bbagen_2024_130633 crossref_primary_10_1111_pce_15168 crossref_primary_10_3390_life13020559 crossref_primary_10_1111_jipb_13611 crossref_primary_10_1016_j_plaphy_2024_109408 crossref_primary_10_1007_s10725_024_01197_z crossref_primary_10_1016_j_indcrop_2024_119993 crossref_primary_10_1038_s41598_023_32114_5 crossref_primary_10_1016_j_plaphy_2025_109766 crossref_primary_10_1111_ppl_70154 crossref_primary_10_3389_fmicb_2024_1358137 crossref_primary_10_1016_j_jplph_2024_154373 crossref_primary_10_1039_D2EN00954D crossref_primary_10_1016_j_plaphy_2023_108264 crossref_primary_10_3390_f14050995 crossref_primary_10_1016_j_scienta_2025_114014 crossref_primary_10_1111_ppl_70390 crossref_primary_10_1016_j_stress_2025_101034 crossref_primary_10_3390_agronomy13123002 crossref_primary_10_3389_fpls_2023_1296286 crossref_primary_10_1111_ppl_14218 crossref_primary_10_1007_s00425_023_04126_y crossref_primary_10_1111_ppl_14458 crossref_primary_10_3390_ijms23148044 crossref_primary_10_1016_j_coesh_2025_100653 crossref_primary_10_3389_fevo_2025_1550290 crossref_primary_10_1016_j_scienta_2022_111559 crossref_primary_10_1111_ppl_14210 crossref_primary_10_1016_j_plaphy_2024_108567 crossref_primary_10_1111_ppl_14454 crossref_primary_10_1016_j_plaphy_2024_108572 crossref_primary_10_3390_antiox13091088 crossref_primary_10_1111_tpj_17232 crossref_primary_10_7717_peerj_14602 crossref_primary_10_1016_j_bios_2024_117039 crossref_primary_10_1088_1755_1315_1487_1_012063 crossref_primary_10_1111_jipb_13635 crossref_primary_10_1007_s10725_024_01260_9 crossref_primary_10_1007_s00425_025_04665_6 crossref_primary_10_3389_fpls_2024_1283912 crossref_primary_10_3390_ijms251910487 crossref_primary_10_1007_s00299_025_03557_z crossref_primary_10_3390_ijms25126464 crossref_primary_10_3389_fpls_2023_1323841 crossref_primary_10_1111_pce_15147 crossref_primary_10_3390_ijms25084331 crossref_primary_10_3389_fpls_2024_1403220 crossref_primary_10_1016_j_plaphy_2025_109989 crossref_primary_10_1007_s00299_024_03391_9 crossref_primary_10_1007_s11103_023_01368_y crossref_primary_10_1007_s44154_022_00069_8 crossref_primary_10_1111_jipb_13873 crossref_primary_10_3389_fgene_2025_1599242 crossref_primary_10_1002_agt2_288 crossref_primary_10_1016_j_snb_2023_134499 crossref_primary_10_1016_j_plaphy_2025_109730 crossref_primary_10_1016_j_scitotenv_2024_174503 crossref_primary_10_3389_fpls_2023_1278895 crossref_primary_10_3390_ijms24087290 crossref_primary_10_1186_s12870_024_05916_6 crossref_primary_10_3390_ijms24087051 crossref_primary_10_3390_su152115569 crossref_primary_10_1111_tpj_70414 crossref_primary_10_1007_s10725_023_01089_8 crossref_primary_10_1016_j_ijbiomac_2024_139058 crossref_primary_10_3389_fpls_2023_1265339 crossref_primary_10_3390_horticulturae11040408 crossref_primary_10_3390_agronomy14040843 crossref_primary_10_1007_s13562_024_00895_z crossref_primary_10_1016_j_scienta_2023_111836 crossref_primary_10_1111_jipb_13622 crossref_primary_10_1016_j_plaphy_2025_109736 crossref_primary_10_3390_ijms23095236 crossref_primary_10_1007_s00122_023_04461_4 crossref_primary_10_1007_s00425_023_04070_x crossref_primary_10_1002_adma_202402745 crossref_primary_10_1111_tpj_16122 crossref_primary_10_32604_phyton_2023_043306 crossref_primary_10_3390_ijms25021227 crossref_primary_10_1016_j_molp_2025_06_012 crossref_primary_10_1111_ppl_14082 crossref_primary_10_3390_ijms24109099 crossref_primary_10_1186_s12870_024_04981_1 crossref_primary_10_3390_agronomy14040659 crossref_primary_10_1186_s12870_022_03663_0 crossref_primary_10_1016_j_scitotenv_2023_169009 crossref_primary_10_3389_fpls_2024_1391248 crossref_primary_10_1016_j_tplants_2023_03_006 crossref_primary_10_15316_selcukjafsci_1611943 crossref_primary_10_1007_s10265_023_01454_8 crossref_primary_10_1016_j_plantsci_2025_112523 crossref_primary_10_3389_fpls_2025_1518846 crossref_primary_10_1016_j_scienta_2022_111506 crossref_primary_10_3389_fpls_2023_1198930 crossref_primary_10_3390_plants14152386 crossref_primary_10_1093_plphys_kiae406 crossref_primary_10_1134_S1021443725600370 crossref_primary_10_1093_plphys_kiad315 crossref_primary_10_1186_s42397_024_00171_4 crossref_primary_10_1038_s44319_025_00556_9 crossref_primary_10_1016_j_gene_2023_147537 crossref_primary_10_1111_pbi_14367 crossref_primary_10_1371_journal_pone_0330439 crossref_primary_10_2183_pjab_98_024 crossref_primary_10_1016_j_plantsci_2023_111669 crossref_primary_10_1038_s41598_024_71847_9 crossref_primary_10_3389_fpls_2025_1552092 crossref_primary_10_1186_s12284_025_00787_3 crossref_primary_10_3389_fpls_2023_1303667 crossref_primary_10_3390_plants13121649 crossref_primary_10_1093_plcell_koad307 crossref_primary_10_1016_j_envexpbot_2023_105574 crossref_primary_10_1016_j_plantsci_2025_112750 crossref_primary_10_1016_j_plaphy_2024_108767 crossref_primary_10_1038_s41467_024_50290_4 crossref_primary_10_1038_s41467_025_57550_x crossref_primary_10_1007_s11033_022_08114_5 crossref_primary_10_3389_fpls_2022_978066 crossref_primary_10_1007_s11032_024_01534_0 crossref_primary_10_1007_s44154_024_00167_9 crossref_primary_10_1016_j_impact_2022_100420 crossref_primary_10_3390_plants13152142 crossref_primary_10_1016_j_cj_2023_07_002 crossref_primary_10_1016_j_ecoenv_2025_118753 crossref_primary_10_1093_jxb_erad325 crossref_primary_10_3390_agriculture12111879 crossref_primary_10_1007_s11032_023_01385_1 crossref_primary_10_3390_ijms26157139 crossref_primary_10_3390_ijms26073455 crossref_primary_10_1007_s13562_024_00877_1 crossref_primary_10_1016_j_plaphy_2025_110098 crossref_primary_10_1016_j_plaphy_2025_110091 crossref_primary_10_1007_s11676_025_01859_2 crossref_primary_10_3390_f16050789 crossref_primary_10_1186_s12870_023_04198_8 crossref_primary_10_1016_j_envexpbot_2023_105541 crossref_primary_10_3390_plants12132558 crossref_primary_10_1093_plphys_kiac445 crossref_primary_10_1093_plphys_kiad532 crossref_primary_10_1016_j_indcrop_2023_116862 crossref_primary_10_1016_j_jgg_2025_03_007 crossref_primary_10_1111_jipb_13829 crossref_primary_10_1007_s00344_023_11177_8 crossref_primary_10_1016_j_jgg_2024_09_022 crossref_primary_10_1111_jipb_13828 crossref_primary_10_1111_jipb_13827 crossref_primary_10_3389_fevo_2022_975771 crossref_primary_10_1111_pbi_14147 crossref_primary_10_1016_j_ijbiomac_2025_147172 crossref_primary_10_3390_horticulturae8050429 crossref_primary_10_3389_fpls_2022_837152 crossref_primary_10_1038_s41598_024_54623_7 crossref_primary_10_1007_s00344_023_11033_9 crossref_primary_10_3390_plants13121666 crossref_primary_10_1093_hr_uhac244 crossref_primary_10_3389_fpls_2024_1475500 crossref_primary_10_3390_ijms24043623 crossref_primary_10_1016_j_stress_2024_100700 crossref_primary_10_3389_fpls_2023_1271137 crossref_primary_10_3390_ijms23169301 crossref_primary_10_1016_j_envexpbot_2023_105312 crossref_primary_10_1016_j_indcrop_2024_119593 crossref_primary_10_1186_s12864_024_10369_0 crossref_primary_10_1016_j_pmpp_2023_102191 crossref_primary_10_1016_j_ijbiomac_2025_147385 crossref_primary_10_3389_fpls_2022_976094 crossref_primary_10_1186_s12864_025_11646_2 crossref_primary_10_1016_j_aca_2024_343478 crossref_primary_10_1016_j_molp_2025_07_011 crossref_primary_10_1007_s00299_023_03094_7 crossref_primary_10_1111_tpj_16568 crossref_primary_10_3390_plants12234058 crossref_primary_10_1007_s11033_023_08640_w crossref_primary_10_1111_pce_15566 crossref_primary_10_3389_fpls_2025_1545187 crossref_primary_10_1007_s11033_022_07999_6 crossref_primary_10_1016_j_csbj_2024_09_010 crossref_primary_10_1016_j_bbrc_2024_150955 crossref_primary_10_1111_pbi_70017 crossref_primary_10_1038_s41598_025_94873_7 crossref_primary_10_1093_plphys_kiad114 crossref_primary_10_1111_nph_70123 crossref_primary_10_1007_s11240_025_03133_z crossref_primary_10_1021_acs_jafc_5c07100 crossref_primary_10_1016_j_ijbiomac_2024_137294 crossref_primary_10_3390_ijms25179383 crossref_primary_10_3390_ijms26189164 crossref_primary_10_1093_plcell_koac263 crossref_primary_10_3390_ijms26073245 crossref_primary_10_3389_fpls_2022_1011939 crossref_primary_10_3390_plants14142119 crossref_primary_10_1007_s00122_025_04933_9 crossref_primary_10_1007_s11274_025_04488_3 crossref_primary_10_1007_s11103_022_01282_9 crossref_primary_10_3390_ijms25074111 crossref_primary_10_1007_s10725_025_01372_w crossref_primary_10_1007_s42729_025_02561_2 crossref_primary_10_1016_j_gene_2025_149235 crossref_primary_10_1016_j_plaphy_2024_108721 crossref_primary_10_1186_s12870_025_06689_2 crossref_primary_10_3390_su162310619 crossref_primary_10_1016_j_cj_2023_06_001 crossref_primary_10_1016_j_jhazmat_2025_138687 crossref_primary_10_1016_j_cj_2023_06_002 crossref_primary_10_1039_D2EN00688J crossref_primary_10_1016_j_fbio_2024_104360 crossref_primary_10_1093_hr_uhac291 crossref_primary_10_1038_s41467_023_38464_y crossref_primary_10_3389_fpls_2024_1371895 crossref_primary_10_1007_s00299_025_03586_8 crossref_primary_10_1111_pce_14455 crossref_primary_10_3390_ijms24010542 crossref_primary_10_1016_j_stress_2024_100733 crossref_primary_10_1002_advs_202307650 crossref_primary_10_1186_s40168_025_02126_6 crossref_primary_10_1111_nph_19703 crossref_primary_10_17221_61_2022_PPS crossref_primary_10_1016_j_plaphy_2024_108972 crossref_primary_10_1007_s12298_024_01455_4 crossref_primary_10_1111_pbi_14349 crossref_primary_10_3390_genes16030344 crossref_primary_10_3390_plants14081180 crossref_primary_10_1007_s00299_024_03236_5 crossref_primary_10_3390_ijms232113469 crossref_primary_10_1093_plcell_koac248 crossref_primary_10_1016_j_ijbiomac_2025_141829 crossref_primary_10_1080_01904167_2025_2503982 crossref_primary_10_3389_fpls_2024_1393663 crossref_primary_10_1007_s10142_025_01633_x crossref_primary_10_1111_pce_15314 crossref_primary_10_1111_pbi_70003 crossref_primary_10_3390_genes14112006 crossref_primary_10_1007_s12298_025_01585_3 crossref_primary_10_1016_j_plaphy_2024_108507 crossref_primary_10_3389_fmicb_2023_1213884 crossref_primary_10_1007_s13580_024_00636_0 crossref_primary_10_3390_plants14142135 crossref_primary_10_1111_tpj_70023 crossref_primary_10_3390_ijms26062387 crossref_primary_10_1016_j_postharvbio_2025_113557 crossref_primary_10_1111_pbi_70241 |
| Cites_doi | 10.1101/cshperspect.a040014 10.1002/9781118764374.ch8 10.1016/j.cell.2021.04.046 10.1105/tpc.112.100107 10.1038/nbt.2120 10.1016/j.devcel.2020.10.012 10.1111/tpj.14671 10.1016/j.plaphy.2011.09.012 10.7554/eLife.13546 10.1016/j.cell.2016.08.029 10.1007/s00425-001-0675-3 10.1111/nph.14882 10.1126/science.aaw8848 10.1104/pp.17.00269 10.1105/tpc.112.108340 10.1073/pnas.1906244116 10.1016/j.molp.2020.11.022 10.1104/pp.113.234641 10.1104/pp.113.222901 10.1038/nature13593 10.1093/plphys/kiab157 10.1111/j.1469-8137.2010.03225.x 10.1146/annurev.arplant.50.1.571 10.1016/j.celrep.2019.12.012 10.1006/bbrc.1998.9267 10.1093/pcp/pcv096 10.1038/s41580-018-0016-z 10.1038/s41467-020-19977-2 10.1038/s41586-020-2032-3 10.1111/jipb.12780 10.1146/annurev.arplant.53.091401.143329 10.1111/tpj.13383 10.1016/j.cub.2020.01.089 10.1038/s41477-020-0707-2 10.1111/pbi.13443 10.1016/j.tplants.2020.01.009 10.1073/pnas.0702595104 10.1111/j.1365-313X.2009.03981.x 10.1186/1471-2164-15-431 10.1126/science.1172408 10.1016/j.devcel.2014.12.023 10.1093/pcp/pcq182 10.1104/pp.008532 10.1073/pnas.1919901117 10.1126/science.1173041 10.1046/j.1365-313X.2002.01384.x 10.1073/pnas.1402275111 10.1105/tpc.19.00604 10.1111/jipb.12901 10.1073/pnas.1613910113 10.1016/j.molp.2020.04.006 10.1093/pcp/pcw230 10.1104/pp.112.208702 10.1038/s41586-019-1449-z 10.1105/tpc.16.00808 10.1111/jipb.12899 10.1016/j.devcel.2019.08.008 10.1101/gr.134106.111 10.1111/tpj.12808 10.1093/nar/gkx1229 10.1111/tpj.13492 10.1007/s00425-013-1960-7 10.1073/pnas.1319955111 10.1016/j.devcel.2017.09.025 10.1111/tpj.14144 10.1073/pnas.0912021106 10.1146/annurev-arplant-043015-111854 10.1016/j.cell.2020.05.023 10.1146/annurev-arplant-043014-114648 10.1016/j.devcel.2019.02.010 10.1073/pnas.1900774116 10.1046/j.1365-313X.2003.01708.x 10.1016/j.cub.2020.09.016 10.1016/j.tplants.2016.04.004 10.1105/tpc.003483 10.1073/pnas.1316717111 10.1104/pp.19.00832 10.1111/jipb.13061 10.1111/pbi.13154 10.1126/scisignal.abf0322 10.1105/tpc.113.113159 10.1016/j.molcel.2017.06.031 10.1111/tpj.12205 10.1038/cr.2013.95 10.1111/pbi.12659 10.1111/pce.12130 10.1111/pbi.13124 10.1016/j.cell.2009.11.006 10.1016/j.plantsci.2021.110899 10.1016/j.febslet.2009.08.033 10.1007/s10529-011-0620-x 10.1111/tpj.14416 10.1111/j.1365-313X.2009.04025.x 10.1016/j.cell.2013.02.033 10.1111/j.1467-7652.2010.00547.x 10.1016/j.cub.2017.12.046 10.1104/pp.113.217810 10.1016/j.cell.2015.01.046 10.1093/jxb/erq151 10.1016/S0092-8674(01)00460-3 10.1101/gr.177659.114 10.1016/j.cub.2018.01.023 10.1073/pnas.1522301112 10.1126/science.aaf6005 10.1073/pnas.1420944112 10.1126/science.aac6014 10.1104/pp.20.00591 10.1111/pce.12968 10.1016/j.molcel.2017.02.016 10.1111/jipb.12689 10.1016/j.molp.2017.12.013 10.1105/tpc.106.041673 10.1126/science.aaf5656 10.1038/nbt.2948 10.1111/jipb.12714 10.1105/tpc.10.8.1391 10.1146/annurev.micro.62.081307.162918 10.1016/j.tplants.2007.05.001 10.1146/annurev-arplant-050718-095919 10.1023/A:1006321900483 10.1093/nar/gkv234 10.1038/ng1643 10.1126/science.aaz7614 10.1105/tpc.114.129171 10.1146/annurev.arplant.57.032905.105444 10.4161/psb.5.8.12225 10.1038/s41586-020-2644-7 10.1105/tpc.20.00453 10.1007/s00299-019-02383-4 10.1093/jxb/erv312 10.3389/fpls.2020.556972 10.1104/pp.17.01432 10.1038/s41580-020-00288-9 10.1104/pp.006478 10.1111/j.1469-8137.2008.02682.x 10.1073/pnas.0912030107 10.1016/j.molcel.2017.12.002 10.1073/pnas.172399299 10.1093/mp/ssq014 10.3389/fpls.2016.01079 10.1073/pnas.1816991115 10.1016/j.pbi.2009.07.012 10.1016/j.plantsci.2010.06.019 10.1038/s41467-020-15239-3 10.1105/tpc.113.119982 10.1038/s41586-019-1679-0 10.1111/j.1365-313X.2007.03052.x 10.1146/annurev-phyto-082712-102342 10.1093/jxb/erab008 10.1111/jipb.13063 10.1016/j.devcel.2017.09.024 10.1038/ng.3636 10.1007/s10142-002-0070-6 10.1038/sj.embor.7400791 10.1073/pnas.94.3.1035 10.1105/tpc.113.114595 10.1038/ng.3305 10.1038/ncomms9139 10.1111/jipb.12918 10.1016/j.devcel.2020.08.005 10.1104/pp.102.011999 10.1093/jxb/erz523 10.1016/j.tplants.2007.07.002 10.1007/s00425-015-2418-x 10.7554/eLife.41845 10.15252/embj.201899819 10.1016/j.plaphy.2020.05.005 10.1146/annurev-arplant-050718-100016 10.1146/annurev-cellbio-100617-062949 10.1016/j.bbagrm.2011.10.002 10.1016/j.ecoenv.2019.109485 10.1038/s41587-020-0581-5 10.1016/j.celrep.2013.11.019 10.1111/tpj.14756 10.1105/tpc.19.00335 10.1111/tpj.14345 10.1038/s41586-018-0009-2 10.1104/pp.103.026914 10.1111/jipb.12654 10.1111/jipb.13058 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2021 2021. Springer Nature Limited. Springer Nature Limited 2021. |
| Copyright_xml | – notice: Springer Nature Limited 2021 – notice: 2021. Springer Nature Limited. – notice: Springer Nature Limited 2021. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
| DOI | 10.1038/s41576-021-00413-0 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture Biology |
| EISSN | 1471-0064 |
| EndPage | 119 |
| ExternalDocumentID | 34561623 10_1038_s41576_021_00413_0 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- -DZ .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AFBBN AFFNX AFKRA AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR IHW INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 |
| ID | FETCH-LOGICAL-c375t-9ebfd97339e257464e215cab3d9d3f29b8cc27c7e6d844914ee5c1075ff26dae3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 1443 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698871700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-0056 1471-0064 |
| IngestDate | Sun Nov 09 13:32:03 EST 2025 Mon Oct 06 18:27:09 EDT 2025 Wed Feb 19 02:26:44 EST 2025 Tue Nov 18 22:33:30 EST 2025 Sat Nov 29 02:34:59 EST 2025 Fri Feb 21 02:40:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | 2021. Springer Nature Limited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c375t-9ebfd97339e257464e215cab3d9d3f29b8cc27c7e6d844914ee5c1075ff26dae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-0695-3593 0000-0001-5134-731X |
| PMID | 34561623 |
| PQID | 2621430606 |
| PQPubID | 44267 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2576655552 proquest_journals_2621430606 pubmed_primary_34561623 crossref_citationtrail_10_1038_s41576_021_00413_0 crossref_primary_10_1038_s41576_021_00413_0 springer_journals_10_1038_s41576_021_00413_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature reviews. Genetics |
| PublicationTitleAbbrev | Nat Rev Genet |
| PublicationTitleAlternate | Nat Rev Genet |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Dinneny (CR79) 2019; 35 Hu (CR139) 2017; 67 Lou, Wang, Yu (CR174) 2018; 18 Qin (CR159) 2021; 184 Chen (CR58) 2021; 63 Kreps (CR93) 2002; 130 Dobrenel (CR182) 2016; 67 Hirsch (CR157) 2014; 26 Mao (CR166) 2015; 6 Yamaguchi-Shinozaki, Shinozaki (CR86) 2006; 57 Tang (CR96) 2020; 62 Ling (CR111) 2017; 89 Nolan, Vukasinovic, Liu, Russinova, Yin (CR185) 2020; 32 Gupta (CR170) 2018; 41 Chakrabarti, de Lorenzo, Abdel-Ghany, Reddy, Hunt (CR118) 2020; 102 Watkinson (CR102) 2003; 133 Chen (CR196) 2020; 30 Liu, Wang, Sun (CR11) 2018; 9 Danquah (CR61) 2015; 82 Zhao (CR20) 2018; 115 Haake (CR90) 2002; 130 Lu (CR175) 2020; 38 Zhu, Li, Gao (CR178) 2020; 21 Baek (CR146) 2011; 52 Gu (CR116) 2018; 46 Stockinger, Gilmour, Thomashow (CR88) 1997; 94 Zhang (CR171) 2018; 176 Ding (CR49) 2015; 32 Min (CR41) 2019; 12 Claeys, Van Landeghem, Dubois, Maleux, Inze (CR101) 2014; 165 Chang (CR141) 2020; 62 Casal, Balasubramanian (CR29) 2019; 70 Zhan (CR106) 2015; 6 Sunkar, Chinnusamy, Zhu, Zhu (CR122) 2007; 12 Maity (CR12) 2019; 116 Khan (CR143) 2013; 13 Jung (CR27) 2016; 354 Vaillant, Schubert, Tourmente, Mathieu (CR151) 2006; 7 Zhang, Li, Lin, Chong (CR8) 2019; 70 Singh, Bhardwaj, Sharma, Purohit (CR189) 2020; 154 Fowler, Thomashow (CR92) 2002; 14 Li (CR197) 2017; 43 Katsuta (CR50) 2020; 103 McAinsh, Pittman (CR33) 2009; 181 Ding (CR134) 2019; 38 Lin (CR55) 2021; 12 Tellez-Robledo (CR119) 2019; 99 Munns (CR160) 2012; 30 Wang (CR25) 2020; 14 Tang, Wang, Li, Luan (CR36) 2020; 25 Soma, Takahashi, Suzuki, Shinozaki, Yamaguchi-Shinozaki (CR52) 2020; 11 Chinnusamy, Zhu, Zhu (CR95) 2007; 12 Chinnusamy, Dalal, Zhu (CR142) 2014 Kumar, Wigge (CR32) 2010; 140 Zhu (CR3) 2016; 167 Choi, Toyota, Kim, Hilleary, Gilroy (CR74) 2014; 111 Sun (CR43) 2016; 243 Gong (CR107) 2002; 99 Feng (CR19) 2018; 28 Zhang (CR162) 2018; 217 Li (CR163) 2015; 47 Zandalinas, Mittler (CR77) 2021; 186 Liu (CR158) 2020; 182 Li (CR184) 2020; 55 Zhao (CR60) 2017; 43 Wu (CR45) 2019; 61 Szostkiewicz (CR100) 2010; 61 Zhan, Lu, Zhu, Botella (CR177) 2020; 63 Zandalinas, Fichman, Mittler (CR75) 2020; 32 Cai (CR183) 2014; 111 Feng, Chen, Zuo (CR137) 2019; 61 Pesaresi, Kim (CR65) 2019; 38 Bailey-Serres, Parker, Ainsworth, Oldroyd, Schroeder (CR1) 2019; 575 Ma (CR46) 2009; 324 Wang (CR176) 2019; 17 Liu (CR23) 2020; 7 Merret (CR130) 2017; 174 Hugouvieux, Kwak, Schroeder (CR103) 2001; 106 Zheng (CR147) 2019; 97 Li (CR114) 2020; 21 Simmons (CR173) 2021; 307 Sunkar, Kapoor, Zhu (CR123) 2006; 18 Wang (CR164) 2020; 39 Narusaka (CR85) 2003; 34 Lugtenberg, Kamilova (CR195) 2009; 63 Ma (CR18) 2019; 48 Kim, Park, Gilmour, Thomashow (CR38) 2013; 75 Zemach (CR150) 2013; 153 Jiang (CR26) 2020; 13 Medina, Catalá, Salinas (CR98) 2011; 180 Hamilton (CR13) 2015; 350 Leftley, Banda, Pandey, Bennett, Voss (CR80) 2021 Kilian (CR135) 2007; 50 Chan, Phua, Crisp, McQuinn, Pogson (CR64) 2016; 67 Scharf, Berberich, Ebersberger, Nover (CR31) 2012; 1819 Meinhard, Rodriguez, Grill (CR70) 2002; 214 Wang (CR167) 2016; 48 Ding (CR198) 2018; 37 Isner, Begum, Nuehse, Hetherington, Maathuis (CR57) 2018; 28 Yu (CR132) 2020; 30 Vaidya (CR190) 2019; 366 Wu, Wang, Yeh, Lu, Wu (CR105) 2010; 186 Merret (CR127) 2015; 43 Suzuki (CR72) 2013; 25 Choi (CR73) 2017; 90 Legris (CR28) 2016; 354 Wang (CR115) 2015; 6 Vilchez (CR193) 2020; 6 Guan (CR108) 2013; 25 Wang (CR199) 2019; 51 Liu (CR87) 1998; 10 Park (CR47) 2009; 324 Miller (CR71) 2009; 2 Santiago (CR99) 2009; 60 Waltz (CR172) 2014; 32 Merret (CR128) 2013; 5 Yang, Guo (CR7) 2018; 60 Wang (CR110) 2020; 71 Brandt (CR68) 2015; 4 Zhang (CR131) 2017; 29 Cui (CR168) 2011; 49 Cao (CR191) 2017; 8 Jiang (CR153) 2014; 24 Jojoa-Cruz (CR10) 2018; 7 Cui (CR22) 2020; 183 Thomashow (CR97) 1999; 50 Zhang, Zhao, Zhu (CR2) 2020; 55 Xu (CR144) 2015; 66 Wang (CR133) 2016; 12 Morran (CR179) 2011; 9 Lin (CR51) 2020; 11 Yuan (CR9) 2014; 514 Sangwan, Orvar, Beyerly, Hirt, Dhindsa (CR21) 2002; 31 Ma, Bohnert (CR83) 2007; 8 Ma (CR24) 2015; 160 Jacob, Hirt, Bendahmane (CR82) 2017; 15 de Zelicourt, Colcombet, Hirt (CR62) 2016; 21 Qi (CR63) 2018; 60 Srivastava (CR186) 2020; 30 Yang (CR59) 2010; 5 Geiger (CR69) 2010; 107 Marquez, Brown, Simpson, Barta, Kalyna (CR112) 2012; 22 Geiger (CR39) 2009; 106 Nguyen (CR129) 2015; 56 Takahashi, Kuromori, Urano, Yamaguchi-Shinozaki, Shinozaki (CR6) 2020; 11 Wang (CR44) 2020; 117 Nakashima (CR180) 2014; 239 Nakashima (CR91) 2000; 42 Ding (CR113) 2014; 15 Hua (CR66) 2012; 24 Zhou (CR125) 2013; 161 Wibowo (CR155) 2016; 5 Chen (CR48) 2020; 62 Hrabak (CR35) 2003; 132 Lu (CR109) 2020; 182 Liu (CR200) 2017; 66 Wang (CR181) 2018; 69 Wu (CR67) 2020; 578 Seki (CR94) 2002; 2 Takahashi (CR53) 2020; 11 Shinwari (CR89) 1998; 250 Zhu (CR148) 2020; 32 Jiang (CR15) 2019; 572 Yang (CR126) 2013; 36 Laohavisit (CR17) 2013; 163 Willems (CR136) 2019; 99 Yong-Villalobos (CR145) 2015; 112 Wang (CR165) 2021; 19 Takahashi (CR78) 2018; 556 Liu (CR124) 2019; 17 Lang-Mladek (CR154) 2010; 3 Sanchez, Paszkowski (CR156) 2014; 10 Okamoto (CR104) 2016; 7 Zhu (CR84) 2002; 53 Hua (CR81) 2009; 12 Reinhold-Hurek, Bunger, Burbano, Sabale, Hurek (CR192) 2015; 53 Wang (CR187) 2018; 11 Chong, Foo, Lin, Wong, Verslues (CR117) 2019; 116 Ren (CR161) 2005; 37 Liu, Zhang (CR194) 2015; 6 Matamoros, Becana (CR138) 2021; 72 Rennie (CR16) 2014; 26 Fichman, Myers, Grant, Mittler (CR76) 2021; 14 Zhang (CR149) 2016; 113 Iwasaki, Paszkowski (CR152) 2014; 111 Zhang, Lang, Zhu (CR140) 2018; 19 Cao (CR188) 2013; 23 Chen (CR4) 2021; 63 Mallikarjuna, Mallikarjuna, Reddy, Kaul (CR169) 2011; 33 Marti, Stancombe, Webb (CR34) 2013; 163 Ye, Zhou, Wu, Ji, Li (CR120) 2019; 183 Gobert, Isayenkov, Voelker, Czempinski, Maathuis (CR56) 2007; 104 Sirichandra (CR42) 2009; 583 Gupta, Rico-Medina, Cano-Delgado (CR5) 2020; 368 Tang (CR37) 2015; 112 Fabregas, Yoshida, Fernie (CR54) 2020; 11 Jung (CR30) 2020; 585 Rogers, Chen (CR121) 2013; 25 Hamilton, Haswell (CR14) 2017; 58 Klingler, Batelli, Zhu (CR40) 2010; 61 Y Kim (413_CR38) 2013; 75 ES Hamilton (413_CR14) 2017; 58 D Geiger (413_CR39) 2009; 106 M Cui (413_CR168) 2011; 49 JJ Casal (413_CR29) 2019; 70 P Jacob (413_CR82) 2017; 15 I Vaillant (413_CR151) 2006; 7 M Iwasaki (413_CR152) 2014; 111 R Munns (413_CR160) 2012; 30 D Geiger (413_CR69) 2010; 107 K Yamaguchi-Shinozaki (413_CR86) 2006; 57 L Yong-Villalobos (413_CR145) 2015; 112 JK Zhu (413_CR84) 2002; 53 L Zhang (413_CR131) 2017; 29 CT Ye (413_CR120) 2019; 183 Y Li (413_CR114) 2020; 21 Y Ma (413_CR24) 2015; 160 C Sirichandra (413_CR42) 2009; 583 I Szostkiewicz (413_CR100) 2010; 61 Z Lin (413_CR55) 2021; 12 JK Zhu (413_CR3) 2016; 167 M Legris (413_CR28) 2016; 354 FH Wu (413_CR67) 2020; 578 Y Takahashi (413_CR53) 2020; 11 J Wang (413_CR25) 2020; 14 C Lang-Mladek (413_CR154) 2010; 3 J Bailey-Serres (413_CR1) 2019; 575 BK Gupta (413_CR170) 2018; 41 MJ Cao (413_CR191) 2017; 8 JI Vilchez (413_CR193) 2020; 6 SI Zandalinas (413_CR77) 2021; 186 J Zhang (413_CR171) 2018; 176 XM Liu (413_CR194) 2015; 6 P Pesaresi (413_CR65) 2019; 38 SI Zandalinas (413_CR75) 2020; 32 M Srivastava (413_CR186) 2020; 30 JP Klingler (413_CR40) 2010; 61 KX Chan (413_CR64) 2016; 67 EJ Stockinger (413_CR88) 1997; 94 B Tellez-Robledo (413_CR119) 2019; 99 Z Wang (413_CR165) 2021; 19 C Jiang (413_CR153) 2014; 24 C Zhao (413_CR60) 2017; 43 Y Ding (413_CR134) 2019; 38 EM Hrabak (413_CR35) 2003; 132 B Lugtenberg (413_CR195) 2009; 63 QQ Wu (413_CR45) 2019; 61 P Qin (413_CR159) 2021; 184 M Meinhard (413_CR70) 2002; 214 WG Choi (413_CR73) 2017; 90 X Wang (413_CR167) 2016; 48 S Katsuta (413_CR50) 2020; 103 Z Gong (413_CR107) 2002; 99 JC Isner (413_CR57) 2018; 28 MG Wang (413_CR176) 2019; 17 Q Liu (413_CR87) 1998; 10 JA Kreps (413_CR93) 2002; 130 SJ Wu (413_CR105) 2010; 186 JI Watkinson (413_CR102) 2003; 133 ZY Cai (413_CR183) 2014; 111 R Merret (413_CR127) 2015; 43 CR Simmons (413_CR173) 2021; 307 J Medina (413_CR98) 2011; 180 H Claeys (413_CR101) 2014; 165 B Zhang (413_CR149) 2016; 113 Y Ling (413_CR111) 2017; 89 GL Chong (413_CR117) 2019; 116 A Laohavisit (413_CR17) 2013; 163 XM Li (413_CR163) 2015; 47 K Nakashima (413_CR180) 2014; 239 TM Nolan (413_CR185) 2020; 32 Y Ding (413_CR198) 2018; 37 Q Liu (413_CR23) 2020; 7 J Kilian (413_CR135) 2007; 50 J Santiago (413_CR99) 2009; 60 P Willems (413_CR136) 2019; 99 T Dobrenel (413_CR182) 2016; 67 M Seki (413_CR94) 2002; 2 B Brandt (413_CR68) 2015; 4 T Yang (413_CR59) 2010; 5 J Hua (413_CR81) 2009; 12 JR Dinneny (413_CR79) 2019; 35 Z Lin (413_CR51) 2020; 11 C Zhao (413_CR20) 2018; 115 N Suzuki (413_CR72) 2013; 25 H Yu (413_CR132) 2020; 30 CN Hirsch (413_CR157) 2014; 26 S Jojoa-Cruz (413_CR10) 2018; 7 Y Cui (413_CR22) 2020; 183 N Fabregas (413_CR54) 2020; 11 X Wang (413_CR199) 2019; 51 S Morran (413_CR179) 2011; 9 R Sunkar (413_CR122) 2007; 12 DH Sanchez (413_CR156) 2014; 10 V Hugouvieux (413_CR103) 2001; 106 F Takahashi (413_CR6) 2020; 11 JF Li (413_CR184) 2020; 55 RJ Tang (413_CR36) 2020; 25 P Wang (413_CR44) 2020; 117 M Chakrabarti (413_CR118) 2020; 102 MF Thomashow (413_CR97) 1999; 50 RJ Tang (413_CR37) 2015; 112 JY Zhang (413_CR8) 2019; 70 F Takahashi (413_CR78) 2018; 556 H Zhang (413_CR140) 2018; 19 K Tang (413_CR96) 2020; 62 Y Marquez (413_CR112) 2012; 22 Z Liu (413_CR200) 2017; 66 YN Chang (413_CR141) 2020; 62 J Hu (413_CR139) 2017; 67 K Chen (413_CR196) 2020; 30 MC Marti (413_CR34) 2013; 163 L Ma (413_CR18) 2019; 48 WG Choi (413_CR74) 2014; 111 M Zhou (413_CR125) 2013; 161 K Nakashima (413_CR91) 2000; 42 R Merret (413_CR128) 2013; 5 M Okamoto (413_CR104) 2016; 7 S Fowler (413_CR92) 2002; 14 V Chinnusamy (413_CR95) 2007; 12 E Waltz (413_CR172) 2014; 32 Z Wang (413_CR164) 2020; 39 PC Wang (413_CR181) 2018; 69 Y Ding (413_CR49) 2015; 32 D Lou (413_CR174) 2018; 18 CA Lu (413_CR109) 2020; 182 KD Scharf (413_CR31) 2012; 1819 SY Park (413_CR47) 2009; 324 AR Khan (413_CR143) 2013; 13 ZJ Wang (413_CR115) 2015; 6 B Wang (413_CR110) 2020; 71 V Chinnusamy (413_CR142) 2014 HD Mao (413_CR166) 2015; 6 J Feng (413_CR137) 2019; 61 A Zemach (413_CR150) 2013; 153 B Reinhold-Hurek (413_CR192) 2015; 53 Y Liu (413_CR124) 2019; 17 F Yuan (413_CR9) 2014; 514 EA Rennie (413_CR16) 2014; 26 R Sunkar (413_CR123) 2006; 18 M Zhang (413_CR162) 2018; 217 J Gu (413_CR116) 2018; 46 HJ Wang (413_CR187) 2018; 11 G Miller (413_CR71) 2009; 2 G Mallikarjuna (413_CR169) 2011; 33 DP Hua (413_CR66) 2012; 24 Y Zhu (413_CR148) 2020; 32 Z Jiang (413_CR15) 2019; 572 ZK Shinwari (413_CR89) 1998; 250 CH Yang (413_CR126) 2013; 36 D Baek (413_CR146) 2011; 52 JH Jung (413_CR30) 2020; 585 R Merret (413_CR130) 2017; 174 K Chen (413_CR48) 2020; 62 SJ Sun (413_CR43) 2016; 243 A Wibowo (413_CR155) 2016; 5 X Liu (413_CR11) 2018; 9 X Zhan (413_CR177) 2020; 63 Y Yang (413_CR7) 2018; 60 M Zheng (413_CR147) 2019; 97 H Zhang (413_CR2) 2020; 55 F Ding (413_CR113) 2014; 15 K Maity (413_CR12) 2019; 116 SV Kumar (413_CR32) 2010; 140 A de Zelicourt (413_CR62) 2016; 21 K Rogers (413_CR121) 2013; 25 S Wang (413_CR133) 2016; 12 MJ Cao (413_CR188) 2013; 23 R Singh (413_CR189) 2020; 154 Y Narusaka (413_CR85) 2003; 34 R Xu (413_CR144) 2015; 66 XX Chen (413_CR4) 2021; 63 XX Chen (413_CR58) 2021; 63 H Li (413_CR197) 2017; 43 A Gupta (413_CR5) 2020; 368 ZH Ren (413_CR161) 2005; 37 H Zhu (413_CR178) 2020; 21 B Jiang (413_CR26) 2020; 13 MA Matamoros (413_CR138) 2021; 72 Y Ma (413_CR46) 2009; 324 ES Hamilton (413_CR13) 2015; 350 A Danquah (413_CR61) 2015; 82 X Zhan (413_CR106) 2015; 6 Y Fichman (413_CR76) 2021; 14 AH Nguyen (413_CR129) 2015; 56 W Feng (413_CR19) 2018; 28 F Soma (413_CR52) 2020; 11 S Ma (413_CR83) 2007; 8 Y Lu (413_CR175) 2020; 38 AS Vaidya (413_CR190) 2019; 366 V Haake (413_CR90) 2002; 130 V Sangwan (413_CR21) 2002; 31 JH Jung (413_CR27) 2016; 354 MK Min (413_CR41) 2019; 12 MR McAinsh (413_CR33) 2009; 181 Q Guan (413_CR108) 2013; 25 J Qi (413_CR63) 2018; 60 A Gobert (413_CR56) 2007; 104 N Leftley (413_CR80) 2021 YC Liu (413_CR158) 2020; 182 |
| References_xml | – volume: 99 start-page: 752 year: 2019 end-page: 762 ident: CR136 article-title: The Plant PTM Viewer, a central resource for exploring plant protein modifications publication-title: Plant J. – volume: 94 start-page: 1035 year: 1997 end-page: 1040 ident: CR88 article-title: CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a -acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit publication-title: Proc. Natl Acad. Sci. USA – volume: 43 start-page: 4121 year: 2015 end-page: 4132 ident: CR127 article-title: Heat-induced ribosome pausing triggers mRNA co-translational decay in publication-title: Nucleic Acids Res. – volume: 161 start-page: 1375 year: 2013 end-page: 1391 ident: CR125 article-title: Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass publication-title: Plant Physiol. – volume: 102 start-page: 916 year: 2020 end-page: 930 ident: CR118 article-title: Wide-ranging transcriptome remodelling mediated by alternative polyadenylation in response to abiotic stresses in Sorghum publication-title: Plant J. – volume: 23 start-page: 1043 year: 2013 end-page: 1054 ident: CR188 article-title: An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants publication-title: Cell Res. – volume: 11 start-page: 315 year: 2018 end-page: 325 ident: CR187 article-title: Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2 publication-title: Mol. Plant – volume: 575 start-page: 109 year: 2019 end-page: 118 ident: CR1 article-title: Genetic strategies for improving crop yields publication-title: Nature – volume: 556 start-page: 235 year: 2018 end-page: 238 ident: CR78 article-title: A small peptide modulates stomatal control via abscisic acid in long-distance signalling publication-title: Nature – volume: 17 start-page: 1697 year: 2019 end-page: 1699 ident: CR176 article-title: Optimizing base editors for improved efficiency and expanded editing scope in rice publication-title: Plant Biotechnol. J. – volume: 186 start-page: 833 year: 2010 end-page: 842 ident: CR105 article-title: Isolation and characterization of the heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance publication-title: N. Phytol. – volume: 49 start-page: 1384 year: 2011 end-page: 1391 ident: CR168 article-title: Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice publication-title: Plant Physiol. Biochem. – volume: 163 start-page: 253 year: 2013 end-page: 262 ident: CR17 article-title: Salinity-induced calcium signaling and root adaptation in arabidopsis require the calcium regulatory protein annexin1 publication-title: Plant Physiol. – volume: 250 start-page: 161 year: 1998 end-page: 170 ident: CR89 article-title: An gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression publication-title: Biochem. Biophys. Res. Commun. – volume: 56 start-page: 1762 year: 2015 end-page: 1772 ident: CR129 article-title: Loss of 5′–3′ exoribonuclease AtXRN4 function enhances heat stress tolerance of plants subjected to severe heat stress publication-title: Plant Cell Physiol. – volume: 106 start-page: 477 year: 2001 end-page: 487 ident: CR103 article-title: An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in publication-title: Cell – volume: 19 start-page: 20 year: 2021 end-page: 22 ident: CR165 article-title: Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication publication-title: Plant Biotechnol. J. – volume: 37 start-page: 1141 year: 2005 end-page: 1146 ident: CR161 article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter publication-title: Nat. Genet. – volume: 90 start-page: 698 year: 2017 end-page: 707 ident: CR73 article-title: Orchestrating rapid long-distance signaling in plants with Ca , ROS and electrical signals publication-title: Plant J. – volume: 15 start-page: 405 year: 2017 end-page: 414 ident: CR82 article-title: The heat-shock protein/chaperone network and multiple stress resistance publication-title: Plant Biotechnol. J. – volume: 7 start-page: 1273 year: 2006 end-page: 1278 ident: CR151 article-title: MOM1 mediates DNA-methylation-independent silencing of repetitive sequences in publication-title: EMBO Rep. – volume: 11 year: 2020 ident: CR53 article-title: MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response publication-title: Nat. Commun. – volume: 50 start-page: 347 year: 2007 end-page: 363 ident: CR135 article-title: The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses publication-title: Plant J. – volume: 67 start-page: 25 year: 2016 end-page: 53 ident: CR64 article-title: Learning the languages of the chloroplast: retrograde signaling and beyond publication-title: Annu. Rev. Plant Biol. – volume: 4 year: 2015 ident: CR68 article-title: Calcium specificity signaling mechanisms in abscisic acid signal transduction in guard cells publication-title: eLife – volume: 99 start-page: 1203 year: 2019 end-page: 1219 ident: CR119 article-title: The polyadenylation factor FIP1 is important for plant development and root responses to abiotic stresses publication-title: Plant J. – volume: 112 start-page: 3134 year: 2015 end-page: 3139 ident: CR37 article-title: Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in publication-title: Proc. Natl Acad. Sci. USA – volume: 25 start-page: 3553 year: 2013 end-page: 3569 ident: CR72 article-title: Temporal–spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants publication-title: Plant Cell – volume: 111 start-page: 9651 year: 2014 end-page: 9656 ident: CR183 article-title: GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in publication-title: Proc. Natl Acad. Sci. USA – volume: 61 start-page: 1206 year: 2019 end-page: 1223 ident: CR137 article-title: Protein S-nitrosylation in plants: current progresses and challenges publication-title: J. Integr. Plant Biol. – volume: 17 start-page: 2370 year: 2019 end-page: 2383 ident: CR124 article-title: MiR319 mediated salt tolerance by ethylene publication-title: Plant Biotechnol. J. – volume: 572 start-page: 341 year: 2019 end-page: 346 ident: CR15 article-title: Plant cell-surface GIPC sphingolipids sense salt to trigger Ca influx publication-title: Nature – volume: 53 start-page: 247 year: 2002 end-page: 273 ident: CR84 article-title: Salt and drought stress signal transduction in plants publication-title: Annu. Rev. Plant Biol. – volume: 22 start-page: 1184 year: 2012 end-page: 1195 ident: CR112 article-title: Transcriptome survey reveals increased complexity of the alternative splicing landscape in publication-title: Genome Res. – volume: 180 start-page: 3 year: 2011 end-page: 11 ident: CR98 article-title: The CBFs: three transcription factors to cold acclimate publication-title: Plant Sci. – volume: 58 start-page: 1222 year: 2017 end-page: 1237 ident: CR14 article-title: The tension-sensitive ion transport activity of MSL8 is critical for its function in pollen hydration and germination publication-title: Plant Cell Physiol. – volume: 186 start-page: 1721 year: 2021 end-page: 1733 ident: CR77 article-title: Vascular and non-vascular transmission of systemic reactive oxygen signals during wounding and heat stress publication-title: Plant Physiol. – volume: 42 start-page: 657 year: 2000 end-page: 665 ident: CR91 article-title: Organization and expression of two DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression publication-title: Plant Mol. Biol. – volume: 67 start-page: 702 year: 2017 end-page: 710.e4 ident: CR139 article-title: Nitric oxide regulates protein methylation during stress responses in plants publication-title: Mol. Cell – volume: 6 year: 2015 ident: CR166 article-title: A transposable element in a NAC gene is associated with drought tolerance in maize seedlings publication-title: Nat. Commun. – volume: 174 start-page: 1216 year: 2017 end-page: 1225 ident: CR130 article-title: Heat shock protein HSP101 affects the release of ribosomal protein mRNAs for recovery after heat shock publication-title: Plant Physiol. – volume: 14 start-page: 315 year: 2020 end-page: 329 ident: CR25 article-title: Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice publication-title: Mol. Plant – volume: 30 start-page: 1410 year: 2020 end-page: 1423 ident: CR186 article-title: SUMO conjugation to BZR1 enables brassinosteroid signaling to integrate environmental cues to shape plant growth publication-title: Curr. Biol. – volume: 11 year: 2020 ident: CR52 article-title: Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress publication-title: Nat. Commun. – volume: 34 start-page: 137 year: 2003 end-page: 148 ident: CR85 article-title: Interaction between two -acting elements, ABRE and DRE, in ABA-dependent expression of rd29A gene in response to dehydration and high-salinity stresses publication-title: Plant J. – volume: 66 start-page: 117 year: 2017 end-page: 128.e5 ident: CR200 article-title: Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response publication-title: Mol. Cell – volume: 104 start-page: 10726 year: 2007 end-page: 10731 ident: CR56 article-title: The two-pore channel TPK1 gene encodes the vacuolar K conductance and plays a role in K homeostasis publication-title: Proc. Natl Acad. Sci. USA – volume: 113 start-page: 12580 year: 2016 end-page: 12585 ident: CR149 article-title: Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation publication-title: Proc. Natl Acad. Sci. USA – volume: 132 start-page: 666 year: 2003 end-page: 680 ident: CR35 article-title: The CDPK–SnRK superfamily of protein kinases publication-title: Plant Physiol. – volume: 354 start-page: 886 year: 2016 end-page: 889 ident: CR27 article-title: Phytochromes function as thermosensors in publication-title: Science – volume: 82 start-page: 232 year: 2015 end-page: 244 ident: CR61 article-title: Identification and characterization of an ABA-activated MAP kinase cascade in publication-title: Plant J. – volume: 239 start-page: 47 year: 2014 end-page: 60 ident: CR180 article-title: Comparative functional analysis of six drought-responsive promoters in transgenic rice publication-title: Planta – volume: 10 year: 2014 ident: CR156 article-title: Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene publication-title: PLoS Genet. – volume: 115 start-page: 13123 year: 2018 end-page: 13128 ident: CR20 article-title: Leucine-rich repeat extensin proteins regulate plant salt tolerance in publication-title: Proc. Natl Acad. Sci. USA – volume: 2 start-page: 282 year: 2002 end-page: 291 ident: CR94 article-title: Monitoring the expression pattern of around 7,000 genes under ABA treatments using a full-length cDNA microarray publication-title: Funct. Integr.Genomics – volume: 46 start-page: 1777 year: 2018 end-page: 1792 ident: CR116 article-title: Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in publication-title: Nucleic Acids Res. – volume: 69 start-page: 100 year: 2018 end-page: 112 ident: CR181 article-title: Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response publication-title: Mol. Cell – volume: 354 start-page: 897 year: 2016 end-page: 900 ident: CR28 article-title: Phytochrome B integrates light and temperature signals in publication-title: Science – volume: 35 start-page: 239 year: 2019 end-page: 257 ident: CR79 article-title: Developmental responses to water and salinity in root systems publication-title: Annu. Rev. Cell Dev. Biol. – volume: 6 year: 2015 ident: CR106 article-title: An PWI and RRM motif-containing protein is critical for pre-mRNA splicing and ABA responses publication-title: Nat. Commun. – volume: 12 start-page: 444 year: 2007 end-page: 451 ident: CR95 article-title: Cold stress regulation of gene expression in plants publication-title: Trends Plant Sci. – volume: 14 start-page: 1675 year: 2002 end-page: 1690 ident: CR92 article-title: transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway publication-title: Plant Cell – volume: 57 start-page: 781 year: 2006 end-page: 803 ident: CR86 article-title: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses publication-title: Annu. Rev. Plant Biol. – volume: 7 year: 2018 ident: CR10 article-title: Cryo-EM structure of the mechanically activated ion channel OSCA1.2 publication-title: eLife – volume: 111 start-page: 6497 year: 2014 end-page: 6502 ident: CR74 article-title: Salt stress-induced Ca waves are associated with rapid, long-distance root-to-shoot signaling in plants publication-title: Proc. Natl Acad. Sci. USA – volume: 21 start-page: 661 year: 2020 end-page: 677 ident: CR178 article-title: Applications of CRISPR–Cas in agriculture and plant biotechnology publication-title: Nat. Rev. Mol. Cell Biol. – volume: 13 year: 2013 ident: CR143 article-title: Vernalization treatment induces site-specific DNA hypermethylation at the VERNALIZATION-A1 (VRN-A1) locus in hexaploid winter wheat publication-title: BMC Plant Biol. – volume: 8 year: 2017 ident: CR191 article-title: Combining chemical and genetic approaches to increase drought resistance in plants publication-title: Nat. Commun. – volume: 368 start-page: 266 year: 2020 end-page: 269 ident: CR5 article-title: The physiology of plant responses to drought publication-title: Science – volume: 111 start-page: 8547 year: 2014 end-page: 8552 ident: CR152 article-title: Identification of genes preventing transgenerational transmission of stress-induced epigenetic states publication-title: Proc. Natl Acad. Sci. USA – volume: 41 start-page: 1186 year: 2018 end-page: 1200 ident: CR170 article-title: Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice publication-title: Plant Cell Env. – volume: 48 start-page: 1233 year: 2016 end-page: 1241 ident: CR167 article-title: Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings publication-title: Nat. Genet. – volume: 30 start-page: 229 year: 2020 end-page: 242.e5 ident: CR132 article-title: STCH4/REIL2 confers cold stress tolerance in by promoting rRNA processing and CBF protein translation publication-title: Cell Rep. – volume: 12 year: 2016 ident: CR133 article-title: Chloroplast RNA-binding protein RBD1 promotes chilling tolerance through 23S rRNA processing in publication-title: PLoS Genet. – volume: 51 start-page: 222 year: 2019 end-page: 235.e5 ident: CR199 article-title: PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15 publication-title: Dev. Cell – year: 2021 ident: CR80 article-title: Uncovering how auxin optimizes root systems architecture in response to environmental stresses publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a040014 – volume: 18 start-page: 2051 year: 2006 end-page: 2065 ident: CR123 article-title: Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in is mediated by downregulation of miR398 and important for oxidative stress tolerance publication-title: Plant Cell – volume: 15 year: 2014 ident: CR113 article-title: Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in publication-title: BMC Genomics – volume: 7 start-page: 1079 year: 2016 ident: CR104 article-title: Sm-like protein-mediated RNA metabolism is required for heat stress tolerance in arabidopsis publication-title: Front. Plant Sci. – volume: 71 start-page: 1598 year: 2020 end-page: 1613 ident: CR110 article-title: The DEAD-box RNA helicase SHI2 functions in repression of salt-inducible genes and regulation of cold-inducible gene splicing publication-title: J. Exp. Bot. – volume: 61 start-page: 3199 year: 2010 end-page: 3210 ident: CR40 article-title: ABA receptors: the START of a new paradigm in phytohormone signalling publication-title: J. Exp. Bot. – volume: 99 start-page: 11507 year: 2002 end-page: 11512 ident: CR107 article-title: RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance publication-title: Proc. Natl Acad. Sci. USA – volume: 11 year: 2020 ident: CR54 article-title: Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants publication-title: Nat. Commun. – volume: 181 start-page: 275 year: 2009 end-page: 294 ident: CR33 article-title: Shaping the calcium signature publication-title: N. Phytol. – volume: 106 start-page: 21425 year: 2009 end-page: 21430 ident: CR39 article-title: Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase–phosphatase pair publication-title: Proc. Natl Acad. Sci. USA – volume: 38 year: 2019 ident: CR134 article-title: EGR2 phosphatase regulates OST1 kinase activity and freezing tolerance in publication-title: EMBO J. – volume: 63 start-page: 494 year: 2021 end-page: 509 ident: CR58 article-title: Arabidopsis U-box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor-like protein kinases LRR1 and KIN7 publication-title: J. Integr. Plant Biol. – volume: 307 start-page: 110899 year: 2021 ident: CR173 article-title: Successes and insights of an industry biotech program to enhance maize agronomic traits publication-title: Plant Sci. – volume: 107 start-page: 8023 year: 2010 end-page: 8028 ident: CR69 article-title: Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca affinities publication-title: Proc. Natl Acad. Sci. USA – volume: 8 year: 2007 ident: CR83 article-title: Integration of stress-related transcript profiles, promoter structures, and cell-specific expression publication-title: Genome Biol. – volume: 514 start-page: 367 year: 2014 end-page: 371 ident: CR9 article-title: OSCA1 mediates osmotic-stress-evoked Ca increases vital for osmosensing in publication-title: Nature – volume: 585 start-page: 256 year: 2020 end-page: 260 ident: CR30 article-title: A prion-like domain in ELF3 functions as a thermosensor in publication-title: Nature – volume: 61 start-page: 478 year: 2019 end-page: 491 ident: CR45 article-title: ZmOST1 mediates abscisic acid regulation of guard cell ion channels and drought stress responses publication-title: J. Integr. Plant Biol. – volume: 12 year: 2021 ident: CR55 article-title: Initiation and amplification of SnRK2 activation in abscisic acid signaling publication-title: Nat. Commun. – volume: 350 start-page: 438 year: 2015 end-page: 441 ident: CR13 article-title: Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination publication-title: Science – volume: 217 start-page: 1161 year: 2018 end-page: 1176 ident: CR162 article-title: A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na exclusion and salt tolerance in maize publication-title: N. Phytol. – volume: 62 start-page: 258 year: 2020 end-page: 263 ident: CR96 article-title: The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes publication-title: J. Integr. Plant Biol. – volume: 33 start-page: 1689 year: 2011 end-page: 1697 ident: CR169 article-title: Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice ( L.) publication-title: Biotechnol. Lett. – volume: 12 start-page: 568 year: 2009 end-page: 573 ident: CR81 article-title: From freezing to scorching, transcriptional responses to temperature variations in plants publication-title: Curr. Opin. Plant Biol. – volume: 72 start-page: 5876 year: 2021 end-page: 5892 ident: CR138 article-title: Molecular responses of legumes to abiotic stress: protein post-translational modifications and redox signaling publication-title: J. Exp. Bot. – volume: 160 start-page: 1209 year: 2015 end-page: 1221 ident: CR24 article-title: COLD1 confers chilling tolerance in rice publication-title: Cell – volume: 9 start-page: 230 year: 2011 end-page: 249 ident: CR179 article-title: Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors publication-title: Plant Biotechnol. J. – volume: 24 start-page: 1821 year: 2014 end-page: 1829 ident: CR153 article-title: Environmentally responsive genome-wide accumulation of de novo mutations and epimutations publication-title: Genome Res. – volume: 43 start-page: 630 year: 2017 end-page: 642 ident: CR197 article-title: MPK3-and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in publication-title: Dev. Cell – volume: 63 start-page: 53 year: 2021 end-page: 78 ident: CR4 article-title: Protein kinases in plant responses to drought, salt, and cold stress publication-title: J. Integr. Plant Biol. – volume: 14 start-page: eabf0322 year: 2021 ident: CR76 article-title: Plasmodesmata-localized proteins and ROS orchestrate light-induced rapid systemic signaling in publication-title: Sci. Signal. – volume: 116 start-page: 22376 year: 2019 end-page: 22385 ident: CR117 article-title: Highly ABA-induced 1 (HAI1)-interacting protein HIN1 and drought acclimation-enhanced splicing efficiency at intron retention sites publication-title: Proc. Natl Acad. Sci. USA – volume: 163 start-page: 625 year: 2013 end-page: 634 ident: CR34 article-title: Cell- and stimulus type-specific intracellular free Ca signals in arabidopsis publication-title: Plant Physiol. – volume: 5 start-page: 1279 year: 2013 end-page: 1293 ident: CR128 article-title: XRN4 and LARP1 are required for a heat-triggered mRNA decay pathway involved in plant acclimation and survival during thermal stress publication-title: Cell Rep. – volume: 11 year: 2020 ident: CR51 article-title: A RAF–SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants publication-title: Nat. Commun. – volume: 38 start-page: 819 year: 2019 end-page: 823 ident: CR65 article-title: Current understanding of GUN1: a key mediator involved in biogenic retrograde signaling publication-title: Plant Cell Rep. – volume: 183 start-page: 109485 year: 2019 ident: CR120 article-title: Genome-wide alternative polyadenylation dynamics in response to biotic and abiotic stresses in rice publication-title: Ecotoxicol. Environ. Saf. – volume: 3 start-page: 594 year: 2010 end-page: 602 ident: CR154 article-title: Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in publication-title: Mol. Plant – volume: 25 start-page: 342 year: 2013 end-page: 356 ident: CR108 article-title: A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in publication-title: Plant Cell – volume: 28 start-page: 666 year: 2018 end-page: 675.e5 ident: CR19 article-title: The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca signaling publication-title: Curr. Biol. – volume: 61 start-page: 25 year: 2010 end-page: 35 ident: CR100 article-title: Closely related receptor complexes differ in their ABA selectivity and sensitivity publication-title: Plant J. – year: 2014 ident: CR142 article-title: Epigenetic regulation of abiotic stress responses in plants publication-title: Plant Abiotic Stress doi: 10.1002/9781118764374.ch8 – volume: 30 start-page: 4815 year: 2020 end-page: 4825.e4 ident: CR196 article-title: BONZAI proteins control global osmotic stress responses in plants publication-title: Curr. Biol. – volume: 30 start-page: 360-U173 year: 2012 ident: CR160 article-title: Wheat grain yield on saline soils is improved by an ancestral Na transporter gene publication-title: Nat. Biotechnol. – volume: 18 year: 2018 ident: CR174 article-title: The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice publication-title: BMC Plant Biol. – volume: 167 start-page: 313 year: 2016 end-page: 324 ident: CR3 article-title: Abiotic stress signaling and responses in plants publication-title: Cell – volume: 28 start-page: 466 year: 2018 end-page: 472 e4 ident: CR57 article-title: KIN7 kinase regulates the vacuolar TPK1 K channel during stomatal closure publication-title: Curr. Biol. – volume: 103 start-page: 634 year: 2020 end-page: 644 ident: CR50 article-title: Raf-like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling publication-title: Plant J. – volume: 60 start-page: 575 year: 2009 end-page: 588 ident: CR99 article-title: Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs publication-title: Plant J. – volume: 31 start-page: 629 year: 2002 end-page: 638 ident: CR21 article-title: Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways publication-title: Plant J. – volume: 37 year: 2018 ident: CR198 article-title: OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses publication-title: EMBO J. – volume: 116 start-page: 14309 year: 2019 end-page: 14318 ident: CR12 article-title: Cryo-EM structure of OSCA1.2 from elucidates the mechanical basis of potential membrane hyperosmolality gating publication-title: Proc. Natl Acad. Sci. USA – volume: 62 start-page: 25 year: 2020 end-page: 54 ident: CR48 article-title: Abscisic acid dynamics, signaling, and functions in plants publication-title: J. Integr. Plant Biol. – volume: 1819 start-page: 104 year: 2012 end-page: 119 ident: CR31 article-title: The plant heat stress transcription factor (Hsf) family: structure, function and evolution publication-title: Biochim. Biophys. Acta – volume: 112 start-page: E7293 year: 2015 end-page: E7302 ident: CR145 article-title: Methylome analysis reveals an important role for epigenetic changes in the regulation of the response to phosphate starvation publication-title: Proc. Natl Acad. Sci. USA – volume: 55 start-page: 367 year: 2020 end-page: 380 ident: CR184 article-title: The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in publication-title: Dev. Cell – volume: 53 start-page: 403 year: 2015 end-page: 424 ident: CR192 article-title: Roots shaping their microbiome: global hotspots for microbial activity publication-title: Annu. Rev. Phytopathol. – volume: 43 start-page: 618 year: 2017 end-page: 629 e5 ident: CR60 article-title: MAP kinase cascades regulate the cold response by modulating ICE1 protein stability publication-title: Dev. Cell – volume: 10 start-page: 1391 year: 1998 end-page: 1406 ident: CR87 article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in publication-title: Plant Cell – volume: 70 start-page: 321 year: 2019 end-page: 346 ident: CR29 article-title: Thermomorphogenesis publication-title: Annu. Rev. Plant Biol. – volume: 183 start-page: 1794 year: 2020 end-page: 1808 ident: CR22 article-title: Cyclic nucleotide-gated ion channels 14 and 16 promote tolerance to heat and chilling in rice publication-title: Plant Physiol. – volume: 60 start-page: 796 year: 2018 end-page: 804 ident: CR7 article-title: Unraveling salt stress signaling in plants publication-title: J. Integr. Plant Biol. – volume: 165 start-page: 519 year: 2014 end-page: 527 ident: CR101 article-title: What is stress? Dose–response effects in commonly used in vitro stress assays publication-title: Plant Physiol. – volume: 26 start-page: 121 year: 2014 end-page: 135 ident: CR157 article-title: Insights into the maize pan-genome and pan-transcriptome publication-title: Plant Cell – volume: 6 start-page: 774 year: 2015 ident: CR194 article-title: The effects of bacterial volatile emissions on plant abiotic stress tolerance publication-title: Front. Plant Sci. – volume: 32 start-page: 610 year: 2014 end-page: 613 ident: CR172 article-title: Beating the heat publication-title: Nat. Biotechnol. – volume: 182 start-page: 162 year: 2020 end-page: 176.e13 ident: CR158 article-title: Pan-genome of wild and cultivated soybeans publication-title: Cell – volume: 7 year: 2020 ident: CR23 article-title: The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants publication-title: EMBO J. – volume: 55 start-page: 529 year: 2020 end-page: 543 ident: CR2 article-title: Thriving under stress: how plants balance growth and the stress response publication-title: Dev. Cell – volume: 11 start-page: 556972 year: 2020 ident: CR6 article-title: Drought stress responses and resistance in plants: from cellular responses to long-distance intercellular communication publication-title: Front. Plant Sci. – volume: 50 start-page: 571 year: 1999 end-page: 599 ident: CR97 article-title: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. – volume: 97 start-page: 587 year: 2019 end-page: 602 ident: CR147 article-title: Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes publication-title: Plant J. – volume: 9 year: 2018 ident: CR11 article-title: Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2 publication-title: Nat. Commun. – volume: 48 start-page: 697 year: 2019 end-page: 709.e5 ident: CR18 article-title: The SOS2–SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress publication-title: Dev. Cell – volume: 133 start-page: 1702 year: 2003 end-page: 1716 ident: CR102 article-title: Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine publication-title: Plant Physiol. – volume: 29 start-page: 1952 year: 2017 end-page: 1969 ident: CR131 article-title: Mutations in eIF5B confer thermosensitive and pleiotropic phenotypes via translation defects in publication-title: Plant Cell – volume: 60 start-page: 805 year: 2018 end-page: 826 ident: CR63 article-title: Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack publication-title: J. Integr. Plant Biol. – volume: 32 start-page: 3425 year: 2020 end-page: 3435 ident: CR75 article-title: Vascular bundles mediate systemic reactive oxygen signaling during light stress publication-title: Plant Cell – volume: 32 start-page: 278 year: 2015 end-page: 289 ident: CR49 article-title: OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in arabidopsis publication-title: Dev. Cell – volume: 583 start-page: 2982 year: 2009 end-page: 2986 ident: CR42 article-title: Phosphorylation of the AtrbohF NADPH oxidase by OST1 protein kinase publication-title: FEBS Lett. – volume: 243 start-page: 489 year: 2016 end-page: 500 ident: CR43 article-title: Protein kinase OsSAPK8 functions as an essential activator of S-type anion channel OsSLAC1, which is nitrate-selective in rice publication-title: Planta – volume: 154 start-page: 387 year: 2020 end-page: 395 ident: CR189 article-title: Identification of novel and selective agonists for ABA receptor PYL3 publication-title: Plant Physiol. Biochem. – volume: 13 start-page: 894 year: 2020 end-page: 906 ident: CR26 article-title: Cold-Induced CBF–pif3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in publication-title: Mol. Plant – volume: 182 start-page: 255 year: 2020 end-page: 271 ident: CR109 article-title: DEAD-Box RNA helicase 42 plays a critical role in pre-mRNA splicing under cold stress publication-title: Plant Physiol. – volume: 140 start-page: 136 year: 2010 end-page: 147 ident: CR32 article-title: H2A.Z-containing nucleosomes mediate the thermosensory response in publication-title: Cell – volume: 39 year: 2020 ident: CR164 article-title: Loss of salt tolerance during tomato domestication conferred by variation in a Na /K transporter publication-title: EMBO J. – volume: 52 start-page: 149 year: 2011 end-page: 161 ident: CR146 article-title: Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance publication-title: Plant Cell Physiol. – volume: 12 start-page: 301 year: 2007 end-page: 309 ident: CR122 article-title: Small RNAs as big players in plant abiotic stress responses and nutrient deprivation publication-title: Trends Plant Sci. – volume: 36 start-page: 2207 year: 2013 end-page: 2218 ident: CR126 article-title: Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice ( L.) publication-title: Plant Cell Env. – volume: 21 year: 2020 ident: CR114 article-title: Comprehensive profiling of alternative splicing landscape during cold acclimation in tea plant publication-title: BMC Genomics – volume: 117 start-page: 3270 year: 2020 end-page: 3280 ident: CR44 article-title: Mapping proteome-wide targets of protein kinases in plant stress responses publication-title: Proc. Natl Acad. Sci. USA – volume: 578 start-page: 577 year: 2020 end-page: 581 ident: CR67 article-title: Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in publication-title: Nature – volume: 153 start-page: 193 year: 2013 end-page: 205 ident: CR150 article-title: The nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin publication-title: Cell – volume: 184 start-page: 3542 year: 2021 end-page: 3558.e16 ident: CR159 article-title: Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations publication-title: Cell – volume: 63 start-page: 3 year: 2020 end-page: 33 ident: CR177 article-title: Genome editing for plant research and crop improvement publication-title: J. Integr. Plant Biol. – volume: 38 start-page: 1402 year: 2020 end-page: 1407 ident: CR175 article-title: Targeted, efficient sequence insertion and replacement in rice publication-title: Nat. Biotechnol. – volume: 6 start-page: 983 year: 2020 end-page: 995 ident: CR193 article-title: DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria publication-title: Nat. Plants – volume: 89 start-page: 291 year: 2017 end-page: 309 ident: CR111 article-title: Pre-mRNA splicing repression triggers abiotic stress signaling in plants publication-title: Plant J. – volume: 25 start-page: 604 year: 2020 end-page: 617 ident: CR36 article-title: The CBL–CIPK calcium signaling network: unified paradigm from 20 years of discoveries publication-title: Trends Plant Sci. – volume: 19 start-page: 489 year: 2018 end-page: 506 ident: CR140 article-title: Dynamics and function of DNA methylation in plants publication-title: Nat. Rev. Mol. Cell Biol. – volume: 26 start-page: 3314 year: 2014 end-page: 3325 ident: CR16 article-title: Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in publication-title: Plant Cell – volume: 75 start-page: 364 year: 2013 end-page: 376 ident: CR38 article-title: Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of publication-title: Plant J. – volume: 324 start-page: 1064 year: 2009 end-page: 1068 ident: CR46 article-title: Regulators of PP2C phosphatase activity function as abscisic acid sensors publication-title: Science – volume: 5 year: 2016 ident: CR155 article-title: Hyperosmotic stress memory in is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity publication-title: eLife – volume: 130 start-page: 639 year: 2002 end-page: 648 ident: CR90 article-title: Transcription factor CBF4 is a regulator of drought adaptation in publication-title: Plant Physiol. – volume: 25 start-page: 2383 year: 2013 end-page: 2399 ident: CR121 article-title: Biogenesis, turnover, and mode of action of plant microRNAs publication-title: Plant Cell – volume: 214 start-page: 775 year: 2002 end-page: 782 ident: CR70 article-title: The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling publication-title: Planta – volume: 47 start-page: 827 year: 2015 end-page: 833 ident: CR163 article-title: Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice publication-title: Nat. Genet. – volume: 2 start-page: ra45 year: 2009 ident: CR71 article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli publication-title: Sci. Signal. – volume: 62 start-page: 563 year: 2020 end-page: 580 ident: CR141 article-title: Epigenetic regulation in plant abiotic stress responses publication-title: J. Integr. Plant Biol. – volume: 366 start-page: eaaw8848 year: 2019 ident: CR190 article-title: Dynamic control of plant water use using designed ABA receptor agonists publication-title: Science – volume: 21 start-page: 677 year: 2016 end-page: 685 ident: CR62 article-title: The role of MAPK modules and ABA during abiotic stress signaling publication-title: Trends Plant Sci. – volume: 32 start-page: 295 year: 2020 end-page: 318 ident: CR185 article-title: Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses publication-title: Plant Cell – volume: 12 year: 2019 ident: CR41 article-title: Two clade A phosphatase 2Cs expressed in guard cells physically interact with abscisic acid signaling components to induce stomatal closure in rice publication-title: Rice – volume: 32 start-page: 703 year: 2020 end-page: 721 ident: CR148 article-title: The arabidopsis nodulin homeobox factor AtNDX interacts with AtRING1A/B and negatively regulates abscisic acid signaling publication-title: Plant Cell – volume: 176 start-page: 2082 year: 2018 end-page: 2094 ident: CR171 article-title: Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development publication-title: Plant Physiol. – volume: 130 start-page: 2129 year: 2002 end-page: 2141 ident: CR93 article-title: Transcriptome changes for in response to salt, osmotic, and cold stress publication-title: Plant Physiol. – volume: 70 start-page: 753 year: 2019 end-page: 780 ident: CR8 article-title: Crop improvement through temperature resilience publication-title: Annu. Rev. Plant Biol. – volume: 24 start-page: 2546 year: 2012 end-page: 2561 ident: CR66 article-title: A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in publication-title: Plant Cell – volume: 66 start-page: 5997 year: 2015 end-page: 6008 ident: CR144 article-title: Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in publication-title: J. Exp. Bot. – volume: 63 start-page: 541 year: 2009 end-page: 556 ident: CR195 article-title: Plant-growth-promoting rhizobacteria publication-title: Annu. Rev. Microbiol. – volume: 5 start-page: 991 year: 2010 end-page: 994 ident: CR59 article-title: Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants publication-title: Plant Signal. Behav. – volume: 324 start-page: 1068 year: 2009 end-page: 1071 ident: CR47 article-title: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins publication-title: Science – volume: 6 year: 2015 ident: CR115 article-title: ABA signalling is fine-tuned by antagonistic HAB1 variants publication-title: Nat. Commun. – volume: 67 start-page: 261 year: 2016 end-page: 285 ident: CR182 article-title: TOR signaling and nutrient sensing publication-title: Annu. Rev. Plant Biol. – volume: 6 year: 2015 ident: 413_CR115 publication-title: Nat. Commun. – volume: 184 start-page: 3542 year: 2021 ident: 413_CR159 publication-title: Cell doi: 10.1016/j.cell.2021.04.046 – volume: 24 start-page: 2546 year: 2012 ident: 413_CR66 publication-title: Plant Cell doi: 10.1105/tpc.112.100107 – volume: 30 start-page: 360-U173 year: 2012 ident: 413_CR160 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2120 – volume: 55 start-page: 529 year: 2020 ident: 413_CR2 publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.10.012 – volume: 102 start-page: 916 year: 2020 ident: 413_CR118 publication-title: Plant J. doi: 10.1111/tpj.14671 – volume: 49 start-page: 1384 year: 2011 ident: 413_CR168 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2011.09.012 – volume: 5 year: 2016 ident: 413_CR155 publication-title: eLife doi: 10.7554/eLife.13546 – volume: 12 year: 2019 ident: 413_CR41 publication-title: Rice – volume: 167 start-page: 313 year: 2016 ident: 413_CR3 publication-title: Cell doi: 10.1016/j.cell.2016.08.029 – volume: 214 start-page: 775 year: 2002 ident: 413_CR70 publication-title: Planta doi: 10.1007/s00425-001-0675-3 – volume: 217 start-page: 1161 year: 2018 ident: 413_CR162 publication-title: N. Phytol. doi: 10.1111/nph.14882 – volume: 366 start-page: eaaw8848 year: 2019 ident: 413_CR190 publication-title: Science doi: 10.1126/science.aaw8848 – volume: 174 start-page: 1216 year: 2017 ident: 413_CR130 publication-title: Plant Physiol. doi: 10.1104/pp.17.00269 – volume: 25 start-page: 342 year: 2013 ident: 413_CR108 publication-title: Plant Cell doi: 10.1105/tpc.112.108340 – volume: 116 start-page: 22376 year: 2019 ident: 413_CR117 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1906244116 – volume: 14 start-page: 315 year: 2020 ident: 413_CR25 publication-title: Mol. Plant doi: 10.1016/j.molp.2020.11.022 – volume: 4 year: 2015 ident: 413_CR68 publication-title: eLife – volume: 165 start-page: 519 year: 2014 ident: 413_CR101 publication-title: Plant Physiol. doi: 10.1104/pp.113.234641 – volume: 163 start-page: 625 year: 2013 ident: 413_CR34 publication-title: Plant Physiol. doi: 10.1104/pp.113.222901 – volume: 514 start-page: 367 year: 2014 ident: 413_CR9 publication-title: Nature doi: 10.1038/nature13593 – volume: 186 start-page: 1721 year: 2021 ident: 413_CR77 publication-title: Plant Physiol. doi: 10.1093/plphys/kiab157 – volume: 186 start-page: 833 year: 2010 ident: 413_CR105 publication-title: N. Phytol. doi: 10.1111/j.1469-8137.2010.03225.x – volume: 50 start-page: 571 year: 1999 ident: 413_CR97 publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.50.1.571 – volume: 12 year: 2016 ident: 413_CR133 publication-title: PLoS Genet. – volume: 30 start-page: 229 year: 2020 ident: 413_CR132 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.12.012 – volume: 250 start-page: 161 year: 1998 ident: 413_CR89 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1998.9267 – volume: 56 start-page: 1762 year: 2015 ident: 413_CR129 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcv096 – volume: 19 start-page: 489 year: 2018 ident: 413_CR140 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0016-z – volume: 11 year: 2020 ident: 413_CR54 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19977-2 – volume: 578 start-page: 577 year: 2020 ident: 413_CR67 publication-title: Nature doi: 10.1038/s41586-020-2032-3 – volume: 61 start-page: 1206 year: 2019 ident: 413_CR137 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12780 – volume: 53 start-page: 247 year: 2002 ident: 413_CR84 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.53.091401.143329 – volume: 89 start-page: 291 year: 2017 ident: 413_CR111 publication-title: Plant J. doi: 10.1111/tpj.13383 – volume: 30 start-page: 1410 year: 2020 ident: 413_CR186 publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.01.089 – volume: 6 start-page: 983 year: 2020 ident: 413_CR193 publication-title: Nat. Plants doi: 10.1038/s41477-020-0707-2 – volume: 19 start-page: 20 year: 2021 ident: 413_CR165 publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13443 – volume: 25 start-page: 604 year: 2020 ident: 413_CR36 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.01.009 – volume: 104 start-page: 10726 year: 2007 ident: 413_CR56 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0702595104 – volume: 9 year: 2018 ident: 413_CR11 publication-title: Nat. Commun. – volume: 60 start-page: 575 year: 2009 ident: 413_CR99 publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.03981.x – volume: 15 year: 2014 ident: 413_CR113 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-431 – volume: 324 start-page: 1064 year: 2009 ident: 413_CR46 publication-title: Science doi: 10.1126/science.1172408 – volume: 32 start-page: 278 year: 2015 ident: 413_CR49 publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.12.023 – volume: 52 start-page: 149 year: 2011 ident: 413_CR146 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcq182 – volume: 130 start-page: 2129 year: 2002 ident: 413_CR93 publication-title: Plant Physiol. doi: 10.1104/pp.008532 – volume: 117 start-page: 3270 year: 2020 ident: 413_CR44 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1919901117 – volume: 324 start-page: 1068 year: 2009 ident: 413_CR47 publication-title: Science doi: 10.1126/science.1173041 – volume: 31 start-page: 629 year: 2002 ident: 413_CR21 publication-title: Plant J. doi: 10.1046/j.1365-313X.2002.01384.x – volume: 111 start-page: 8547 year: 2014 ident: 413_CR152 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1402275111 – volume: 32 start-page: 703 year: 2020 ident: 413_CR148 publication-title: Plant Cell doi: 10.1105/tpc.19.00604 – volume: 62 start-page: 563 year: 2020 ident: 413_CR141 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12901 – volume: 113 start-page: 12580 year: 2016 ident: 413_CR149 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1613910113 – volume: 8 year: 2017 ident: 413_CR191 publication-title: Nat. Commun. – volume: 13 start-page: 894 year: 2020 ident: 413_CR26 publication-title: Mol. Plant doi: 10.1016/j.molp.2020.04.006 – volume: 58 start-page: 1222 year: 2017 ident: 413_CR14 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcw230 – volume: 161 start-page: 1375 year: 2013 ident: 413_CR125 publication-title: Plant Physiol. doi: 10.1104/pp.112.208702 – year: 2014 ident: 413_CR142 publication-title: Plant Abiotic Stress doi: 10.1002/9781118764374.ch8 – volume: 572 start-page: 341 year: 2019 ident: 413_CR15 publication-title: Nature doi: 10.1038/s41586-019-1449-z – volume: 29 start-page: 1952 year: 2017 ident: 413_CR131 publication-title: Plant Cell doi: 10.1105/tpc.16.00808 – volume: 62 start-page: 25 year: 2020 ident: 413_CR48 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12899 – volume: 51 start-page: 222 year: 2019 ident: 413_CR199 publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.08.008 – volume: 22 start-page: 1184 year: 2012 ident: 413_CR112 publication-title: Genome Res. doi: 10.1101/gr.134106.111 – volume: 82 start-page: 232 year: 2015 ident: 413_CR61 publication-title: Plant J. doi: 10.1111/tpj.12808 – volume: 46 start-page: 1777 year: 2018 ident: 413_CR116 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1229 – volume: 90 start-page: 698 year: 2017 ident: 413_CR73 publication-title: Plant J. doi: 10.1111/tpj.13492 – volume: 239 start-page: 47 year: 2014 ident: 413_CR180 publication-title: Planta doi: 10.1007/s00425-013-1960-7 – volume: 111 start-page: 6497 year: 2014 ident: 413_CR74 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1319955111 – volume: 18 year: 2018 ident: 413_CR174 publication-title: BMC Plant Biol. – volume: 43 start-page: 630 year: 2017 ident: 413_CR197 publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.09.025 – volume: 11 year: 2020 ident: 413_CR51 publication-title: Nat. Commun. – volume: 97 start-page: 587 year: 2019 ident: 413_CR147 publication-title: Plant J. doi: 10.1111/tpj.14144 – volume: 106 start-page: 21425 year: 2009 ident: 413_CR39 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0912021106 – volume: 67 start-page: 25 year: 2016 ident: 413_CR64 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043015-111854 – volume: 182 start-page: 162 year: 2020 ident: 413_CR158 publication-title: Cell doi: 10.1016/j.cell.2020.05.023 – volume: 67 start-page: 261 year: 2016 ident: 413_CR182 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043014-114648 – volume: 48 start-page: 697 year: 2019 ident: 413_CR18 publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.02.010 – volume: 116 start-page: 14309 year: 2019 ident: 413_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1900774116 – volume: 34 start-page: 137 year: 2003 ident: 413_CR85 publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01708.x – volume: 30 start-page: 4815 year: 2020 ident: 413_CR196 publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.09.016 – volume: 21 start-page: 677 year: 2016 ident: 413_CR62 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.04.004 – volume: 7 year: 2020 ident: 413_CR23 publication-title: EMBO J. – volume: 14 start-page: 1675 year: 2002 ident: 413_CR92 publication-title: Plant Cell doi: 10.1105/tpc.003483 – volume: 111 start-page: 9651 year: 2014 ident: 413_CR183 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1316717111 – volume: 182 start-page: 255 year: 2020 ident: 413_CR109 publication-title: Plant Physiol. doi: 10.1104/pp.19.00832 – volume: 63 start-page: 53 year: 2021 ident: 413_CR4 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13061 – volume: 17 start-page: 2370 year: 2019 ident: 413_CR124 publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13154 – volume: 14 start-page: eabf0322 year: 2021 ident: 413_CR76 publication-title: Sci. Signal. doi: 10.1126/scisignal.abf0322 – volume: 25 start-page: 2383 year: 2013 ident: 413_CR121 publication-title: Plant Cell doi: 10.1105/tpc.113.113159 – volume: 67 start-page: 702 year: 2017 ident: 413_CR139 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.06.031 – volume: 75 start-page: 364 year: 2013 ident: 413_CR38 publication-title: Plant J. doi: 10.1111/tpj.12205 – volume: 23 start-page: 1043 year: 2013 ident: 413_CR188 publication-title: Cell Res. doi: 10.1038/cr.2013.95 – volume: 15 start-page: 405 year: 2017 ident: 413_CR82 publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12659 – volume: 36 start-page: 2207 year: 2013 ident: 413_CR126 publication-title: Plant Cell Env. doi: 10.1111/pce.12130 – volume: 17 start-page: 1697 year: 2019 ident: 413_CR176 publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13124 – volume: 140 start-page: 136 year: 2010 ident: 413_CR32 publication-title: Cell doi: 10.1016/j.cell.2009.11.006 – volume: 307 start-page: 110899 year: 2021 ident: 413_CR173 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2021.110899 – volume: 583 start-page: 2982 year: 2009 ident: 413_CR42 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.08.033 – volume: 33 start-page: 1689 year: 2011 ident: 413_CR169 publication-title: Biotechnol. Lett. doi: 10.1007/s10529-011-0620-x – volume: 99 start-page: 1203 year: 2019 ident: 413_CR119 publication-title: Plant J. doi: 10.1111/tpj.14416 – volume: 61 start-page: 25 year: 2010 ident: 413_CR100 publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.04025.x – volume: 153 start-page: 193 year: 2013 ident: 413_CR150 publication-title: Cell doi: 10.1016/j.cell.2013.02.033 – volume: 9 start-page: 230 year: 2011 ident: 413_CR179 publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2010.00547.x – volume: 28 start-page: 466 year: 2018 ident: 413_CR57 publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.12.046 – volume: 163 start-page: 253 year: 2013 ident: 413_CR17 publication-title: Plant Physiol. doi: 10.1104/pp.113.217810 – volume: 160 start-page: 1209 year: 2015 ident: 413_CR24 publication-title: Cell doi: 10.1016/j.cell.2015.01.046 – volume: 61 start-page: 3199 year: 2010 ident: 413_CR40 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq151 – volume: 6 start-page: 774 year: 2015 ident: 413_CR194 publication-title: Front. Plant Sci. – volume: 37 year: 2018 ident: 413_CR198 publication-title: EMBO J. – volume: 106 start-page: 477 year: 2001 ident: 413_CR103 publication-title: Cell doi: 10.1016/S0092-8674(01)00460-3 – volume: 24 start-page: 1821 year: 2014 ident: 413_CR153 publication-title: Genome Res. doi: 10.1101/gr.177659.114 – volume: 28 start-page: 666 year: 2018 ident: 413_CR19 publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.01.023 – volume: 112 start-page: E7293 year: 2015 ident: 413_CR145 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1522301112 – volume: 11 year: 2020 ident: 413_CR53 publication-title: Nat. Commun. – volume: 354 start-page: 886 year: 2016 ident: 413_CR27 publication-title: Science doi: 10.1126/science.aaf6005 – volume: 112 start-page: 3134 year: 2015 ident: 413_CR37 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1420944112 – volume: 350 start-page: 438 year: 2015 ident: 413_CR13 publication-title: Science doi: 10.1126/science.aac6014 – volume: 183 start-page: 1794 year: 2020 ident: 413_CR22 publication-title: Plant Physiol. doi: 10.1104/pp.20.00591 – volume: 41 start-page: 1186 year: 2018 ident: 413_CR170 publication-title: Plant Cell Env. doi: 10.1111/pce.12968 – volume: 66 start-page: 117 year: 2017 ident: 413_CR200 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.02.016 – volume: 60 start-page: 796 year: 2018 ident: 413_CR7 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12689 – volume: 11 start-page: 315 year: 2018 ident: 413_CR187 publication-title: Mol. Plant doi: 10.1016/j.molp.2017.12.013 – volume: 18 start-page: 2051 year: 2006 ident: 413_CR123 publication-title: Plant Cell doi: 10.1105/tpc.106.041673 – volume: 354 start-page: 897 year: 2016 ident: 413_CR28 publication-title: Science doi: 10.1126/science.aaf5656 – volume: 32 start-page: 610 year: 2014 ident: 413_CR172 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2948 – volume: 12 year: 2021 ident: 413_CR55 publication-title: Nat. Commun. – volume: 61 start-page: 478 year: 2019 ident: 413_CR45 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12714 – volume: 10 start-page: 1391 year: 1998 ident: 413_CR87 publication-title: Plant Cell doi: 10.1105/tpc.10.8.1391 – volume: 39 year: 2020 ident: 413_CR164 publication-title: EMBO J. – volume: 63 start-page: 541 year: 2009 ident: 413_CR195 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.62.081307.162918 – volume: 12 start-page: 301 year: 2007 ident: 413_CR122 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2007.05.001 – volume: 70 start-page: 321 year: 2019 ident: 413_CR29 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-095919 – volume: 42 start-page: 657 year: 2000 ident: 413_CR91 publication-title: Plant Mol. Biol. doi: 10.1023/A:1006321900483 – volume: 43 start-page: 4121 year: 2015 ident: 413_CR127 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv234 – volume: 37 start-page: 1141 year: 2005 ident: 413_CR161 publication-title: Nat. Genet. doi: 10.1038/ng1643 – volume: 368 start-page: 266 year: 2020 ident: 413_CR5 publication-title: Science doi: 10.1126/science.aaz7614 – volume: 26 start-page: 3314 year: 2014 ident: 413_CR16 publication-title: Plant Cell doi: 10.1105/tpc.114.129171 – volume: 57 start-page: 781 year: 2006 ident: 413_CR86 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105444 – volume: 5 start-page: 991 year: 2010 ident: 413_CR59 publication-title: Plant Signal. Behav. doi: 10.4161/psb.5.8.12225 – volume: 585 start-page: 256 year: 2020 ident: 413_CR30 publication-title: Nature doi: 10.1038/s41586-020-2644-7 – volume: 32 start-page: 3425 year: 2020 ident: 413_CR75 publication-title: Plant Cell doi: 10.1105/tpc.20.00453 – volume: 38 start-page: 819 year: 2019 ident: 413_CR65 publication-title: Plant Cell Rep. doi: 10.1007/s00299-019-02383-4 – volume: 66 start-page: 5997 year: 2015 ident: 413_CR144 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv312 – volume: 11 start-page: 556972 year: 2020 ident: 413_CR6 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.556972 – volume: 176 start-page: 2082 year: 2018 ident: 413_CR171 publication-title: Plant Physiol. doi: 10.1104/pp.17.01432 – volume: 21 start-page: 661 year: 2020 ident: 413_CR178 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00288-9 – volume: 130 start-page: 639 year: 2002 ident: 413_CR90 publication-title: Plant Physiol. doi: 10.1104/pp.006478 – volume: 181 start-page: 275 year: 2009 ident: 413_CR33 publication-title: N. Phytol. doi: 10.1111/j.1469-8137.2008.02682.x – volume: 107 start-page: 8023 year: 2010 ident: 413_CR69 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0912030107 – volume: 69 start-page: 100 year: 2018 ident: 413_CR181 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.002 – volume: 99 start-page: 11507 year: 2002 ident: 413_CR107 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.172399299 – volume: 3 start-page: 594 year: 2010 ident: 413_CR154 publication-title: Mol. Plant doi: 10.1093/mp/ssq014 – year: 2021 ident: 413_CR80 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a040014 – volume: 7 start-page: 1079 year: 2016 ident: 413_CR104 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01079 – volume: 13 year: 2013 ident: 413_CR143 publication-title: BMC Plant Biol. – volume: 115 start-page: 13123 year: 2018 ident: 413_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1816991115 – volume: 12 start-page: 568 year: 2009 ident: 413_CR81 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2009.07.012 – volume: 180 start-page: 3 year: 2011 ident: 413_CR98 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.06.019 – volume: 6 year: 2015 ident: 413_CR166 publication-title: Nat. Commun. – volume: 11 year: 2020 ident: 413_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15239-3 – volume: 26 start-page: 121 year: 2014 ident: 413_CR157 publication-title: Plant Cell doi: 10.1105/tpc.113.119982 – volume: 575 start-page: 109 year: 2019 ident: 413_CR1 publication-title: Nature doi: 10.1038/s41586-019-1679-0 – volume: 2 start-page: ra45 year: 2009 ident: 413_CR71 publication-title: Sci. Signal. – volume: 50 start-page: 347 year: 2007 ident: 413_CR135 publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03052.x – volume: 53 start-page: 403 year: 2015 ident: 413_CR192 publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-082712-102342 – volume: 72 start-page: 5876 year: 2021 ident: 413_CR138 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erab008 – volume: 63 start-page: 3 year: 2020 ident: 413_CR177 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13063 – volume: 43 start-page: 618 year: 2017 ident: 413_CR60 publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.09.024 – volume: 48 start-page: 1233 year: 2016 ident: 413_CR167 publication-title: Nat. Genet. doi: 10.1038/ng.3636 – volume: 2 start-page: 282 year: 2002 ident: 413_CR94 publication-title: Funct. Integr.Genomics doi: 10.1007/s10142-002-0070-6 – volume: 7 start-page: 1273 year: 2006 ident: 413_CR151 publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400791 – volume: 94 start-page: 1035 year: 1997 ident: 413_CR88 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.94.3.1035 – volume: 25 start-page: 3553 year: 2013 ident: 413_CR72 publication-title: Plant Cell doi: 10.1105/tpc.113.114595 – volume: 47 start-page: 827 year: 2015 ident: 413_CR163 publication-title: Nat. Genet. doi: 10.1038/ng.3305 – volume: 6 year: 2015 ident: 413_CR106 publication-title: Nat. Commun. doi: 10.1038/ncomms9139 – volume: 8 year: 2007 ident: 413_CR83 publication-title: Genome Biol. – volume: 62 start-page: 258 year: 2020 ident: 413_CR96 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12918 – volume: 55 start-page: 367 year: 2020 ident: 413_CR184 publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.08.005 – volume: 132 start-page: 666 year: 2003 ident: 413_CR35 publication-title: Plant Physiol. doi: 10.1104/pp.102.011999 – volume: 71 start-page: 1598 year: 2020 ident: 413_CR110 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz523 – volume: 10 year: 2014 ident: 413_CR156 publication-title: PLoS Genet. – volume: 12 start-page: 444 year: 2007 ident: 413_CR95 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2007.07.002 – volume: 243 start-page: 489 year: 2016 ident: 413_CR43 publication-title: Planta doi: 10.1007/s00425-015-2418-x – volume: 7 year: 2018 ident: 413_CR10 publication-title: eLife doi: 10.7554/eLife.41845 – volume: 38 year: 2019 ident: 413_CR134 publication-title: EMBO J. doi: 10.15252/embj.201899819 – volume: 154 start-page: 387 year: 2020 ident: 413_CR189 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.05.005 – volume: 70 start-page: 753 year: 2019 ident: 413_CR8 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-100016 – volume: 35 start-page: 239 year: 2019 ident: 413_CR79 publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100617-062949 – volume: 1819 start-page: 104 year: 2012 ident: 413_CR31 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2011.10.002 – volume: 183 start-page: 109485 year: 2019 ident: 413_CR120 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.109485 – volume: 38 start-page: 1402 year: 2020 ident: 413_CR175 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0581-5 – volume: 5 start-page: 1279 year: 2013 ident: 413_CR128 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.11.019 – volume: 103 start-page: 634 year: 2020 ident: 413_CR50 publication-title: Plant J. doi: 10.1111/tpj.14756 – volume: 32 start-page: 295 year: 2020 ident: 413_CR185 publication-title: Plant Cell doi: 10.1105/tpc.19.00335 – volume: 99 start-page: 752 year: 2019 ident: 413_CR136 publication-title: Plant J. doi: 10.1111/tpj.14345 – volume: 556 start-page: 235 year: 2018 ident: 413_CR78 publication-title: Nature doi: 10.1038/s41586-018-0009-2 – volume: 133 start-page: 1702 year: 2003 ident: 413_CR102 publication-title: Plant Physiol. doi: 10.1104/pp.103.026914 – volume: 60 start-page: 805 year: 2018 ident: 413_CR63 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12654 – volume: 21 year: 2020 ident: 413_CR114 publication-title: BMC Genomics – volume: 63 start-page: 494 year: 2021 ident: 413_CR58 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13058 |
| SSID | ssj0016173 |
| Score | 2.7569675 |
| SecondaryResourceType | review_article |
| Snippet | Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104 |
| SubjectTerms | 631/208/2491 631/208/8 631/337 631/449 Abiotic stress Agriculture Animal Genetics and Genomics Atmosphere - chemistry Biomedical and Life Sciences Biomedicine Cancer Research Carbon Dioxide - metabolism Crops Crops, Agricultural - genetics Crops, Agricultural - growth & development Crops, Agricultural - metabolism Drought Droughts Ecosystem Gene Expression Regulation, Plant Gene Function Human Genetics Information processing Molecular modelling Oxygen - metabolism Plants - genetics Plants - metabolism Post-translation Review Article Salinity Soil - chemistry Stress, Physiological - genetics Temperature Transcription |
| Title | Abiotic stress responses in plants |
| URI | https://link.springer.com/article/10.1038/s41576-021-00413-0 https://www.ncbi.nlm.nih.gov/pubmed/34561623 https://www.proquest.com/docview/2621430606 https://www.proquest.com/docview/2576655552 |
| Volume | 23 |
| WOSCitedRecordID | wos000698871700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1471-0064 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0016173 issn: 1471-0056 databaseCode: 7RV dateStart: 20001001 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WL-hLt35t3rrglr61JrEkW9bT6ErLHkYIZSt5M7Z0gkBxsjgt7L_vne2klNK-1GC9SJbFT6e7k-50B3BaxnFBr4qMRoyUlcwHlYiQxTv6WPg2zuxvPRxm47EZdQdudedWueSJDaN2U8tn5H2RChLtA9K3f8z-RZw1iq2rXQqNNdjgtNlM53q82nCx6t442BMDjjjmZXdpZiCzfk2CS7P7LdcoznDwXDC90DZfWEobAXT98b1D_wQ7neoZXrS0sgsfsNqDrTYZ5f99OLkoJ1OqCtvrI-G89Z7FOpxU4eyO_WUO4O_11Z_LX1GXQSEi0JNFZLD0zmgpDdLSVKlCkvC2KKUzTnphysxaoa3G1GVKmVghJpY2hIn3InUFykNYr6YVfoFQeqsdTaD3njY5qcm8K4xyCWqnnLEygHgJX2678OKc5eIub8zcMstbyHOCPG8gzwcBnK2-mbXBNd5sfbSEN-8WWp0_YRvA8aqalgjbPYoKp_fUhjpKE3pEAJ_b2Vz9TrICSSpgAOfL6X3q_PWxfH17LN9gW_A1ica7-wjWF_N7_A6b9mExqec9ItKb215Dqk2ZUZldxj3Y-Hk1HN302P909AgNcO2r |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQwcFQKqFx4UwIFAoITRN3YzsMHhKpC1arLikORenMTeyytVGWXzRbUn-IbmYmTrVBFbz0QKSc7zijzzrwA3tZpWtGtEl0gJspKloNKJMjqHX0qfOgzOy4mk_L4WH9bg99DLQynVQ4ysRPUbmb5H_m2yAWp9hHZ25_mPxKeGsXR1WGERiCLQzz_RS5b-_HgM-H3nRB7X45295N-qkBCgGTLRGPtnS6k1EjkqnKFpPVsVUunnfRC16W1orAF5q5USqcKMbPkJGXei9xVKOncG3BTSSGZi8rdVUoJuwpdQj8J_IR7bPZFOiNZbrekKAtO9-UVxRMV_laEl6zbS5HZTuHt3fvfPtV9uNub1vFO4IUHsIbNQ7gdhm2eP4I3O_V0RktxKI-JFyE7GNt42sTzU84HegzfrwXAJ7DezBp8CrH0tnBEoN57cuJyXXpXaeUyLJxy2soI0gFdxvbt03mKx6npwviyNAHFhlBsOhSbUQTvV8_MQ_OQK3dvDeg0vSBpzQUuI3i9WiYRwHGdqsHZGe2hg_KMLhHBZqCe1eskG8hk4kbwYSCni8P_Dcuzq2F5BRv7R1_HZnwwOXwOdwSXhHSZ7Fuwvlyc4Qu4ZX8up-3iZccgMZxcN5n9AblURlw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQwcFS2UHHhTQkUCAhOEO3GduL4gFChXVG1Wq0QSL25iT2WVqqyy2YL6q_xdYzjZCtU0VsPRMrJzmSUGc8j8wJ4U6VpSbdIlERMhOFeDgqWoFfv6FLmQp_ZIzmZFMfHaroBv_taGJ9W2cvEVlDbufH_yIcsZ6TaR2RvD12XFjHdG39c_Ej8BCkfae3HaQQWOcTzX-S-NR8O9ojWbxkb73_7_CXpJgwkhFS2ShRWzirJuUJiXZELJA1oyopbZbljqiqMYdJIzG0hhEoFYmbIYcqcY7ktkRPcG7ApOTk9A9j8tD-Zfl3HMPIQ305J_Ce-42ZXsjPixbAhtSl98q9fEX6-wt9q8ZKteylO26q_8d3_-cPdgzud0R3vhlNyHzawfgC3whjO84fwereazWkpDoUz8TLkDWMTz-p4ceozhR7B92tB8DEM6nmNTyDmzkhLrOucI_cuV4WzpRI2Q2mFVYZHkPak06ZrrO7ne5zqNsDPCx3IrYncuiW3HkXwbv3MIrQVuXL3Tk9a3YmYRl_QNYJX62USDj7iU9Y4P6M9BCjP6GIRbAdOWr-Oe9OZjN8I3vesdQH837g8vRqXl7BF3KWPDiaHz-A287UibYr7DgxWyzN8DjfNz9WsWb7oTksMJ9fNZ38AQ8hQug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abiotic+stress+responses+in+plants&rft.jtitle=Nature+reviews.+Genetics&rft.au=Zhang%2C+Huiming&rft.au=Zhu%2C+Jianhua&rft.au=Gong+Zhizhong&rft.au=Jian-Kang%2C+Zhu&rft.date=2022-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=23&rft.issue=2&rft.spage=104&rft.epage=119&rft_id=info:doi/10.1038%2Fs41576-021-00413-0&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon |