Abiotic stress responses in plants

Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms un...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature reviews. Genetics Ročník 23; číslo 2; s. 104 - 119
Hlavní autoři: Zhang, Huiming, Zhu, Jianhua, Gong, Zhizhong, Zhu, Jian-Kang
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.02.2022
Nature Publishing Group
Témata:
ISSN:1471-0056, 1471-0064, 1471-0064
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches. In this Review, Zhang et al. summarize our current understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses, and how this knowledge can be used to improve crop resilience through genetic, chemical and microbial approaches.
AbstractList Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches. In this Review, Zhang et al. summarize our current understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses, and how this knowledge can be used to improve crop resilience through genetic, chemical and microbial approaches.
Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.
Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.
Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.In this Review, Zhang et al. summarize our current understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses, and how this knowledge can be used to improve crop resilience through genetic, chemical and microbial approaches.
Author Gong, Zhizhong
Zhu, Jian-Kang
Zhang, Huiming
Zhu, Jianhua
Author_xml – sequence: 1
  givenname: Huiming
  orcidid: 0000-0003-0695-3593
  surname: Zhang
  fullname: Zhang, Huiming
  email: hmzhang@psc.ac.cn
  organization: Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences
– sequence: 2
  givenname: Jianhua
  surname: Zhu
  fullname: Zhu, Jianhua
  organization: Department of Plant Science and Landscape Architecture, University of Maryland
– sequence: 3
  givenname: Zhizhong
  surname: Gong
  fullname: Gong, Zhizhong
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Institute of Life Science and Green Development, School of Life Sciences, Hebei University
– sequence: 4
  givenname: Jian-Kang
  orcidid: 0000-0001-5134-731X
  surname: Zhu
  fullname: Zhu, Jian-Kang
  email: jkzhu@psc.ac.cn
  organization: Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34561623$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtPwzAUhS0Eog_4AwwogoUl4LeTsap4SZVYYLYS5walSp1gOwP_Hpe0IHWoh2tf6TtHx2eGTm1nAaErgu8JZtmD50QomWJKUow5YSk-QVPC1XaV_PTvLeQEzbxfY0wkUewcTRgXkkjKpuhmUTZdaEzigwPvkzj6znrwSWOTvi1s8BforC5aD5e7e44-nh7fly_p6u35dblYpYYpEdIcyrrKFWM5UKG45ECJMEXJqrxiNc3LzBiqjAJZZZznhAMIQ7ASdU1lVQCbo7vRt3fd1wA-6E3jDbQxBHSD19FVShEPjejtAbruBmdjOk0lJZxhiWWkrnfUUG6g0r1rNoX71vvfRyAbAeM67x3U2jShCE1ngyuaVhOst0XrsWgdi9a_RWscpfRAunc_KmKjyEfYfoL7j31E9QNH5o0b
CitedBy_id crossref_primary_10_1007_s00344_024_11439_z
crossref_primary_10_3389_fbioe_2022_929681
crossref_primary_10_3390_ijms25020893
crossref_primary_10_1016_j_ijbiomac_2025_145287
crossref_primary_10_3390_plants14131953
crossref_primary_10_3390_ijms25136845
crossref_primary_10_3390_plants12163007
crossref_primary_10_1093_pcp_pcad135
crossref_primary_10_3390_genes15091239
crossref_primary_10_3390_agronomy14081805
crossref_primary_10_3390_ijms252111792
crossref_primary_10_1016_j_carbpol_2024_122322
crossref_primary_10_1016_j_tplants_2025_05_017
crossref_primary_10_1111_tpj_16649
crossref_primary_10_1038_s41598_024_69670_3
crossref_primary_10_3390_plants14162459
crossref_primary_10_1093_hr_uhaf145
crossref_primary_10_1016_j_indcrop_2023_117893
crossref_primary_10_3390_plants13020313
crossref_primary_10_1016_j_celrep_2025_115894
crossref_primary_10_3389_fpsyg_2024_1466722
crossref_primary_10_3390_plants11091217
crossref_primary_10_1016_j_envexpbot_2024_105686
crossref_primary_10_1016_j_ijbiomac_2024_130735
crossref_primary_10_3390_ijms25179347
crossref_primary_10_1007_s11240_024_02837_y
crossref_primary_10_1093_plcell_koae245
crossref_primary_10_1111_tpj_70157
crossref_primary_10_1007_s11033_023_08679_9
crossref_primary_10_1016_j_tplants_2023_01_009
crossref_primary_10_1111_tpj_16653
crossref_primary_10_1016_j_cpb_2024_100335
crossref_primary_10_1016_j_hpj_2025_03_001
crossref_primary_10_1016_j_plaphy_2025_110263
crossref_primary_10_3389_fpls_2022_924162
crossref_primary_10_1186_s12870_025_06554_2
crossref_primary_10_1016_j_carbpol_2024_122555
crossref_primary_10_3390_genes14101943
crossref_primary_10_1016_j_ijbiomac_2025_140835
crossref_primary_10_3390_plants11101367
crossref_primary_10_1016_j_plantsci_2023_111822
crossref_primary_10_1186_s12864_025_11795_4
crossref_primary_10_1007_s00344_024_11548_9
crossref_primary_10_1016_j_indcrop_2023_117647
crossref_primary_10_1016_j_plaphy_2024_108926
crossref_primary_10_1186_s12864_025_11566_1
crossref_primary_10_1111_pbi_70346
crossref_primary_10_1007_s00425_024_04544_6
crossref_primary_10_1016_j_jprot_2025_105488
crossref_primary_10_1016_j_scitotenv_2023_165397
crossref_primary_10_1080_15287394_2024_2434656
crossref_primary_10_1111_nph_18549
crossref_primary_10_3389_fpls_2023_1250878
crossref_primary_10_1093_plphys_kiae118
crossref_primary_10_3390_cells12222606
crossref_primary_10_1093_plphys_kiae580
crossref_primary_10_1016_j_plaphy_2025_110019
crossref_primary_10_1111_pce_70038
crossref_primary_10_3390_antiox14060673
crossref_primary_10_3390_ijms232012218
crossref_primary_10_3390_plants14071100
crossref_primary_10_47280_RevFacAgron_LUZ__v42_n3_I
crossref_primary_10_1007_s00344_025_11665_z
crossref_primary_10_3390_plants12040781
crossref_primary_10_1007_s00709_022_01816_4
crossref_primary_10_1016_j_jhazmat_2024_136068
crossref_primary_10_1016_j_jhazmat_2024_136063
crossref_primary_10_1016_j_plaphy_2025_110496
crossref_primary_10_3390_ijms241511996
crossref_primary_10_48130_vegres_0024_0029
crossref_primary_10_1111_pce_14532
crossref_primary_10_1111_pce_14774
crossref_primary_10_1093_hr_uhae279
crossref_primary_10_1038_s41598_024_80831_2
crossref_primary_10_1016_j_gene_2022_147060
crossref_primary_10_1146_annurev_arplant_070324_041348
crossref_primary_10_3390_f14030486
crossref_primary_10_1186_s12864_025_11433_z
crossref_primary_10_3389_fpls_2022_999990
crossref_primary_10_1007_s00425_024_04348_8
crossref_primary_10_1007_s11356_023_30625_2
crossref_primary_10_1016_j_ejbt_2025_07_002
crossref_primary_10_1016_j_hpj_2025_04_004
crossref_primary_10_1016_j_ijbiomac_2024_131804
crossref_primary_10_3390_ijms252111569
crossref_primary_10_3390_agronomy15092145
crossref_primary_10_1038_s41598_024_80261_0
crossref_primary_10_1007_s10722_025_02510_z
crossref_primary_10_1007_s00122_023_04523_7
crossref_primary_10_3390_cimb47090754
crossref_primary_10_1038_s42003_025_08077_w
crossref_primary_10_1111_pce_70029
crossref_primary_10_3390_ijms25031511
crossref_primary_10_1007_s00299_025_03481_2
crossref_primary_10_1007_s11427_023_2361_1
crossref_primary_10_3389_fpls_2023_1111875
crossref_primary_10_3390_ijms25031754
crossref_primary_10_1093_pcp_pcac071
crossref_primary_10_1111_ppl_13987
crossref_primary_10_3389_fsufs_2022_725656
crossref_primary_10_1016_j_plaphy_2024_108708
crossref_primary_10_1007_s10341_025_01430_7
crossref_primary_10_1111_nph_18526
crossref_primary_10_1007_s11103_025_01566_w
crossref_primary_10_1016_j_sajb_2023_10_047
crossref_primary_10_3390_antiox11112225
crossref_primary_10_3390_ijms24021054
crossref_primary_10_3389_fpls_2022_851504
crossref_primary_10_1186_s12870_025_07258_3
crossref_primary_10_3390_genes14122213
crossref_primary_10_3390_ijms24076603
crossref_primary_10_3390_ijms241612668
crossref_primary_10_1111_pce_14509
crossref_primary_10_3390_ijms241914746
crossref_primary_10_1016_j_plantsci_2023_111879
crossref_primary_10_1111_pce_14746
crossref_primary_10_1016_j_jhazmat_2022_130141
crossref_primary_10_3390_ijms231911191
crossref_primary_10_1016_j_jare_2024_09_004
crossref_primary_10_3390_ijms26031157
crossref_primary_10_1016_j_plantsci_2022_111357
crossref_primary_10_1002_ps_7218
crossref_primary_10_1007_s00299_024_03168_0
crossref_primary_10_1111_nph_19209
crossref_primary_10_3390_agronomy12051043
crossref_primary_10_1002_1873_3468_14410
crossref_primary_10_3389_fpls_2024_1492036
crossref_primary_10_3389_fpls_2023_1123436
crossref_primary_10_1093_plphys_kiaf246
crossref_primary_10_1093_plcell_koad192
crossref_primary_10_1111_tpj_16612
crossref_primary_10_7717_peerj_17684
crossref_primary_10_3390_ijms26052095
crossref_primary_10_1111_pbi_70307
crossref_primary_10_1111_tpj_16614
crossref_primary_10_1111_pce_14517
crossref_primary_10_1111_nph_19671
crossref_primary_10_1111_pbi_14605
crossref_primary_10_3389_fpls_2023_1135845
crossref_primary_10_3389_fpls_2025_1642597
crossref_primary_10_1021_acs_jafc_4c06507
crossref_primary_10_3390_horticulturae9010122
crossref_primary_10_1016_j_envexpbot_2023_105373
crossref_primary_10_1371_journal_pone_0319980
crossref_primary_10_3390_ijms242216157
crossref_primary_10_55257_ethabd_1657919
crossref_primary_10_1016_j_stress_2024_100695
crossref_primary_10_3389_fpls_2022_1093589
crossref_primary_10_1016_j_stress_2025_100770
crossref_primary_10_3390_ijms25147714
crossref_primary_10_1016_j_envexpbot_2024_105663
crossref_primary_10_3390_plants13223230
crossref_primary_10_1111_pce_70066
crossref_primary_10_3389_fpls_2023_1187260
crossref_primary_10_1016_j_scienta_2023_112015
crossref_primary_10_3390_ijms25179520
crossref_primary_10_1111_nph_18326
crossref_primary_10_1016_j_scienta_2024_113406
crossref_primary_10_1007_s44154_024_00150_4
crossref_primary_10_1016_j_stress_2025_100761
crossref_primary_10_3389_fpls_2023_1136709
crossref_primary_10_3390_ijms26136008
crossref_primary_10_1093_plcell_koad173
crossref_primary_10_1186_s43897_024_00080_9
crossref_primary_10_1371_journal_pone_0328236
crossref_primary_10_3390_plants13192685
crossref_primary_10_1111_ppl_13702
crossref_primary_10_1007_s42729_025_02421_z
crossref_primary_10_1016_j_jia_2024_01_035
crossref_primary_10_1007_s00299_025_03459_0
crossref_primary_10_1016_j_biosystemseng_2023_11_007
crossref_primary_10_3389_fpls_2024_1368909
crossref_primary_10_1016_j_isci_2025_113249
crossref_primary_10_1007_s11676_023_01661_y
crossref_primary_10_1111_tpj_16800
crossref_primary_10_1186_s12870_022_03867_4
crossref_primary_10_1371_journal_pone_0324447
crossref_primary_10_3389_fpls_2022_996618
crossref_primary_10_1111_pbi_13946
crossref_primary_10_1111_jipb_13372
crossref_primary_10_1007_s11427_023_2463_y
crossref_primary_10_1016_j_ijbiomac_2024_138624
crossref_primary_10_3390_ijms242417276
crossref_primary_10_7235_HORT_20250053
crossref_primary_10_1007_s00299_024_03407_4
crossref_primary_10_3390_horticulturae10030297
crossref_primary_10_1039_D5NH00281H
crossref_primary_10_3390_cells14181456
crossref_primary_10_3389_fpls_2024_1326038
crossref_primary_10_1111_ppl_13790
crossref_primary_10_3390_ijms23094659
crossref_primary_10_1111_nph_20225
crossref_primary_10_1186_s12870_024_05831_w
crossref_primary_10_3390_plants12050976
crossref_primary_10_3390_life12101634
crossref_primary_10_1016_j_plaphy_2024_109175
crossref_primary_10_3390_genes15081048
crossref_primary_10_3390_life12101633
crossref_primary_10_3390_plants12213667
crossref_primary_10_1016_j_stress_2025_100782
crossref_primary_10_1093_jxb_eraf157
crossref_primary_10_1007_s44154_025_00234_9
crossref_primary_10_1093_pcp_pcae073
crossref_primary_10_3390_agriculture15050443
crossref_primary_10_1016_j_micres_2023_127368
crossref_primary_10_1111_ppl_14416
crossref_primary_10_1016_j_ncrops_2024_100024
crossref_primary_10_1186_s12870_024_04922_y
crossref_primary_10_3390_agronomy14020236
crossref_primary_10_1007_s10343_025_01214_9
crossref_primary_10_3390_agronomy12071523
crossref_primary_10_1016_j_scitotenv_2025_180290
crossref_primary_10_3390_ijms241512231
crossref_primary_10_1038_s41598_025_02215_4
crossref_primary_10_1007_s42535_025_01360_5
crossref_primary_10_1038_s41396_022_01288_7
crossref_primary_10_3390_app15073606
crossref_primary_10_1186_s12864_025_11488_y
crossref_primary_10_3390_agronomy14122822
crossref_primary_10_1016_j_scitotenv_2024_172116
crossref_primary_10_1371_journal_pone_0325550
crossref_primary_10_3389_fmicb_2024_1359698
crossref_primary_10_3390_plants14050803
crossref_primary_10_1073_pnas_2221863120
crossref_primary_10_1186_s12870_024_05093_6
crossref_primary_10_1016_j_scienta_2024_113835
crossref_primary_10_1016_j_plaphy_2024_109186
crossref_primary_10_1186_s12870_024_05820_z
crossref_primary_10_1126_science_abq5735
crossref_primary_10_1093_pcp_pcae082
crossref_primary_10_1073_pnas_2221308120
crossref_primary_10_18311_jeoh_2023_34777
crossref_primary_10_1111_jipb_13392
crossref_primary_10_1186_s12870_024_05524_4
crossref_primary_10_3389_fpls_2023_1156514
crossref_primary_10_3390_agronomy13123060
crossref_primary_10_1016_j_ncrops_2024_100031
crossref_primary_10_1002_advs_202308384
crossref_primary_10_1016_j_ijbiomac_2025_142384
crossref_primary_10_3390_agriculture12122084
crossref_primary_10_1016_j_ijbiomac_2023_125501
crossref_primary_10_3389_fpls_2022_928386
crossref_primary_10_3390_plants12102020
crossref_primary_10_3390_plants12112066
crossref_primary_10_3390_horticulturae10030269
crossref_primary_10_1080_15592324_2023_2217605
crossref_primary_10_3389_fpls_2022_1019169
crossref_primary_10_1016_j_jplph_2024_154239
crossref_primary_10_3390_plants14091327
crossref_primary_10_1016_j_scienta_2024_112993
crossref_primary_10_3389_fpls_2024_1466363
crossref_primary_10_3390_ijms25094957
crossref_primary_10_1016_j_jhazmat_2025_138936
crossref_primary_10_1186_s12864_024_10721_4
crossref_primary_10_1186_s12870_024_05975_9
crossref_primary_10_1016_j_indcrop_2024_118412
crossref_primary_10_1038_s41467_025_61827_6
crossref_primary_10_1186_s12870_024_04966_0
crossref_primary_10_1111_jipb_13386
crossref_primary_10_1016_j_cj_2025_04_012
crossref_primary_10_1111_nph_18190
crossref_primary_10_3390_plants12081666
crossref_primary_10_1016_j_plaphy_2025_110475
crossref_primary_10_3390_agronomy15020268
crossref_primary_10_1002_advs_202415106
crossref_primary_10_1016_j_pedsph_2024_10_007
crossref_primary_10_1016_j_ncrops_2024_100057
crossref_primary_10_1016_j_plaphy_2023_107901
crossref_primary_10_3390_plants12152789
crossref_primary_10_48130_mpb_0025_0018
crossref_primary_10_1016_j_pestbp_2025_106527
crossref_primary_10_1016_j_postharvbio_2022_112131
crossref_primary_10_1007_s00284_022_03012_2
crossref_primary_10_1002_pld3_456
crossref_primary_10_1111_jipb_13575
crossref_primary_10_1080_21645698_2025_2559489
crossref_primary_10_3390_genes14071344
crossref_primary_10_1007_s00344_023_10965_6
crossref_primary_10_1016_j_cj_2022_09_002
crossref_primary_10_1016_j_postharvbio_2022_112140
crossref_primary_10_3389_fpls_2022_918537
crossref_primary_10_3390_plants13233444
crossref_primary_10_3389_fpls_2021_807739
crossref_primary_10_3390_plants11131626
crossref_primary_10_3389_fpls_2023_1321952
crossref_primary_10_3390_su152014792
crossref_primary_10_3390_plants12020292
crossref_primary_10_1016_j_isci_2023_108112
crossref_primary_10_3390_plants14131932
crossref_primary_10_1016_j_molp_2023_09_001
crossref_primary_10_3390_plants14172686
crossref_primary_10_1007_s10340_025_01899_x
crossref_primary_10_3389_fpls_2022_1092411
crossref_primary_10_1186_s12870_025_06419_8
crossref_primary_10_3389_fpls_2022_947072
crossref_primary_10_1016_j_plana_2023_100035
crossref_primary_10_1007_s11105_023_01413_6
crossref_primary_10_1021_acs_jafc_4c04734
crossref_primary_10_3389_fpls_2025_1614515
crossref_primary_10_1016_j_ijbiomac_2025_142347
crossref_primary_10_3389_fpls_2022_965745
crossref_primary_10_1016_j_chemosphere_2022_134474
crossref_primary_10_1007_s10725_024_01191_5
crossref_primary_10_3390_plants14172671
crossref_primary_10_1111_tpj_17089
crossref_primary_10_1016_j_ijbiomac_2023_126878
crossref_primary_10_3390_plants14020148
crossref_primary_10_1186_s12870_024_05084_7
crossref_primary_10_1007_s00344_023_11213_7
crossref_primary_10_3390_ijms23179701
crossref_primary_10_1016_j_bbrc_2024_151232
crossref_primary_10_1016_j_plantsci_2022_111509
crossref_primary_10_2478_ebtj_2022_0017
crossref_primary_10_1111_nph_18162
crossref_primary_10_1016_j_jia_2025_09_014
crossref_primary_10_1007_s00344_023_11224_4
crossref_primary_10_3390_ijms23041933
crossref_primary_10_1007_s13562_022_00786_1
crossref_primary_10_1016_j_plantsci_2025_112494
crossref_primary_10_1111_ppl_70521
crossref_primary_10_1186_s12870_025_07065_w
crossref_primary_10_32615_ps_2025_011
crossref_primary_10_1111_ppl_14360
crossref_primary_10_1002_advs_202400445
crossref_primary_10_3390_genes14071417
crossref_primary_10_1371_journal_pone_0324724
crossref_primary_10_1038_s41467_024_50229_9
crossref_primary_10_1146_annurev_arplant_083123_090055
crossref_primary_10_1007_s11427_022_2233_x
crossref_primary_10_1093_plphys_kiac508
crossref_primary_10_3389_fpls_2023_1291731
crossref_primary_10_1016_j_ijbiomac_2023_123369
crossref_primary_10_1007_s00425_024_04364_8
crossref_primary_10_1111_ppl_14126
crossref_primary_10_1016_j_molp_2023_12_002
crossref_primary_10_1021_acs_jafc_5c00194
crossref_primary_10_3390_molecules28062714
crossref_primary_10_1038_s41598_023_40694_5
crossref_primary_10_17221_136_2023_HORTSCI
crossref_primary_10_1007_s00299_025_03565_z
crossref_primary_10_1016_j_heliyon_2023_e21650
crossref_primary_10_3390_genes16030287
crossref_primary_10_3390_ijms24032442
crossref_primary_10_1002_ps_6733
crossref_primary_10_3390_horticulturae11040347
crossref_primary_10_1016_j_ijbiomac_2023_125691
crossref_primary_10_1186_s12284_022_00614_z
crossref_primary_10_3390_stresses2010009
crossref_primary_10_3390_genes13101841
crossref_primary_10_3390_ijms241310641
crossref_primary_10_1016_j_scienta_2025_114323
crossref_primary_10_1093_jxb_erad280
crossref_primary_10_1016_j_bbrc_2024_150693
crossref_primary_10_3390_ijms24032209
crossref_primary_10_3390_cimb46090634
crossref_primary_10_1186_s12870_024_05798_8
crossref_primary_10_1093_treephys_tpaf043
crossref_primary_10_1007_s10343_024_01013_8
crossref_primary_10_1007_s10725_022_00905_x
crossref_primary_10_1016_j_tibs_2024_02_002
crossref_primary_10_1016_j_sajb_2023_07_057
crossref_primary_10_1016_j_wace_2024_100692
crossref_primary_10_1111_pce_15061
crossref_primary_10_1038_s41598_023_42428_z
crossref_primary_10_3390_ijms242015498
crossref_primary_10_3390_ijms25021178
crossref_primary_10_1111_tpj_16075
crossref_primary_10_1016_j_plaphy_2024_109353
crossref_primary_10_1016_j_ijbiomac_2025_141590
crossref_primary_10_1111_nph_70464
crossref_primary_10_3389_fpls_2023_1143963
crossref_primary_10_3390_plants11162097
crossref_primary_10_1016_j_scienta_2024_112911
crossref_primary_10_1093_jxb_erae128
crossref_primary_10_1016_j_jgg_2024_04_005
crossref_primary_10_3389_fpls_2022_853110
crossref_primary_10_3390_plants13131739
crossref_primary_10_1007_s00425_024_04486_z
crossref_primary_10_1002_wrna_1758
crossref_primary_10_3390_genes16070765
crossref_primary_10_3390_phycology5030028
crossref_primary_10_1186_s12870_025_06383_3
crossref_primary_10_3389_fpls_2023_1131735
crossref_primary_10_3390_ijms26030896
crossref_primary_10_1016_j_devcel_2024_12_036
crossref_primary_10_1016_j_plaphy_2025_109819
crossref_primary_10_1016_j_csr_2025_105573
crossref_primary_10_1016_j_jia_2023_09_018
crossref_primary_10_1111_jipb_13544
crossref_primary_10_3390_ijms26041780
crossref_primary_10_1016_j_jes_2025_07_013
crossref_primary_10_3390_ijms222312619
crossref_primary_10_3390_ijms24098079
crossref_primary_10_1111_tpj_17133
crossref_primary_10_3389_fpls_2023_1279896
crossref_primary_10_24326_asphc_2025_5509
crossref_primary_10_3390_ijms25010250
crossref_primary_10_1016_j_ijbiomac_2024_131477
crossref_primary_10_1038_s41598_023_33581_6
crossref_primary_10_1007_s10343_023_00882_9
crossref_primary_10_3390_genes14020270
crossref_primary_10_17221_88_2023_CJGPB
crossref_primary_10_1093_plphys_kiac549
crossref_primary_10_1038_s41467_023_40773_1
crossref_primary_10_3389_fpls_2025_1533248
crossref_primary_10_3390_plants12020305
crossref_primary_10_1016_j_ijbiomac_2022_11_197
crossref_primary_10_1371_journal_pone_0296254
crossref_primary_10_3390_ijms252312748
crossref_primary_10_1371_journal_pone_0319176
crossref_primary_10_1007_s44154_024_00159_9
crossref_primary_10_1146_annurev_phyto_121423_042128
crossref_primary_10_1021_acs_jafc_4c11778
crossref_primary_10_3390_ijms23137045
crossref_primary_10_3390_cimb47030195
crossref_primary_10_1016_j_bbrc_2023_08_031
crossref_primary_10_1186_s12870_022_03884_3
crossref_primary_10_3389_fpls_2023_1334620
crossref_primary_10_3390_horticulturae11080960
crossref_primary_10_3390_biom13101443
crossref_primary_10_3390_horticulturae8111087
crossref_primary_10_1016_j_ijbiomac_2023_126582
crossref_primary_10_3390_ijms26030879
crossref_primary_10_1016_j_envexpbot_2025_106224
crossref_primary_10_1111_tpj_16052
crossref_primary_10_1016_j_plaphy_2024_108451
crossref_primary_10_1186_s12870_024_05598_0
crossref_primary_10_3389_fpls_2022_807844
crossref_primary_10_1073_pnas_2423037122
crossref_primary_10_1111_jipb_13756
crossref_primary_10_3390_ijms24043388
crossref_primary_10_3390_plants12020331
crossref_primary_10_1186_s12284_025_00800_9
crossref_primary_10_1093_treephys_tpaf004
crossref_primary_10_1007_s00344_024_11249_3
crossref_primary_10_3389_fpls_2024_1396634
crossref_primary_10_1007_s10528_024_10845_y
crossref_primary_10_1186_s12864_025_11858_6
crossref_primary_10_1002_anie_202400531
crossref_primary_10_1007_s00114_025_02013_y
crossref_primary_10_1016_j_jgg_2024_03_007
crossref_primary_10_1016_j_plaphy_2024_108456
crossref_primary_10_1016_j_plaphy_2024_109302
crossref_primary_10_1007_s00284_024_03752_3
crossref_primary_10_1111_ppl_70255
crossref_primary_10_1111_ppl_70492
crossref_primary_10_1111_jipb_13504
crossref_primary_10_1002_ange_202400531
crossref_primary_10_1093_jxb_eraf253
crossref_primary_10_1186_s12864_024_10546_1
crossref_primary_10_3390_ijms25169045
crossref_primary_10_1007_s00425_022_03858_7
crossref_primary_10_1016_j_jplph_2025_154570
crossref_primary_10_3389_fpls_2023_1246964
crossref_primary_10_1016_j_ijbiomac_2024_134950
crossref_primary_10_3389_fmicb_2022_986401
crossref_primary_10_1093_jxb_erae165
crossref_primary_10_3390_plants14132062
crossref_primary_10_1016_j_jplph_2022_153827
crossref_primary_10_3389_fpls_2024_1337250
crossref_primary_10_3390_ijms252413383
crossref_primary_10_3389_fgene_2022_909007
crossref_primary_10_1186_s12870_024_05443_4
crossref_primary_10_3389_fmicb_2023_1210890
crossref_primary_10_1016_j_freeradbiomed_2024_09_043
crossref_primary_10_1016_j_envint_2024_109150
crossref_primary_10_1016_j_plaphy_2025_109857
crossref_primary_10_1111_pce_15271
crossref_primary_10_1038_s41477_025_01952_8
crossref_primary_10_3390_horticulturae11080985
crossref_primary_10_3390_ijms25042046
crossref_primary_10_3390_plants13152040
crossref_primary_10_1093_plphys_kiae520
crossref_primary_10_1007_s10343_025_01121_z
crossref_primary_10_1007_s11033_023_09042_8
crossref_primary_10_1016_j_jplph_2023_153997
crossref_primary_10_3390_plants13213082
crossref_primary_10_1093_treephys_tpad001
crossref_primary_10_3390_ijms24065990
crossref_primary_10_3390_biom14020227
crossref_primary_10_1016_j_plantsci_2025_112646
crossref_primary_10_1093_hr_uhae333
crossref_primary_10_1111_pce_15240
crossref_primary_10_1038_s41467_024_47082_1
crossref_primary_10_1111_pbi_70173
crossref_primary_10_3390_plants12051023
crossref_primary_10_1134_S1021443723602008
crossref_primary_10_1007_s12041_023_01456_4
crossref_primary_10_1007_s42535_024_00821_7
crossref_primary_10_1016_j_pmpp_2025_102664
crossref_primary_10_1093_jxb_erad414
crossref_primary_10_3390_genes15070948
crossref_primary_10_1007_s11103_023_01403_y
crossref_primary_10_1016_j_jhazmat_2025_137265
crossref_primary_10_3390_plants14071038
crossref_primary_10_3390_ijms25010465
crossref_primary_10_1111_pbi_70189
crossref_primary_10_1080_00103624_2024_2377625
crossref_primary_10_1016_j_stress_2024_100605
crossref_primary_10_1007_s11104_025_07373_y
crossref_primary_10_1038_s41477_025_01974_2
crossref_primary_10_3389_fpls_2023_1212073
crossref_primary_10_1016_j_plantsci_2025_112631
crossref_primary_10_1093_hr_uhae320
crossref_primary_10_3390_ijms23074016
crossref_primary_10_3390_ijms24098439
crossref_primary_10_1016_j_plaphy_2024_108642
crossref_primary_10_3390_ijms25063306
crossref_primary_10_1007_s00299_025_03496_9
crossref_primary_10_1016_j_envexpbot_2023_105414
crossref_primary_10_3389_fgene_2024_1521062
crossref_primary_10_1111_jipb_13956
crossref_primary_10_1111_pbi_14016
crossref_primary_10_1093_jxb_erad205
crossref_primary_10_1093_treephys_tpae111
crossref_primary_10_1186_s12284_025_00777_5
crossref_primary_10_3389_fpls_2022_972635
crossref_primary_10_1007_s11033_025_10597_x
crossref_primary_10_3390_plants14071072
crossref_primary_10_1007_s12374_022_09370_5
crossref_primary_10_1093_hr_uhad221
crossref_primary_10_3390_ijms23105666
crossref_primary_10_7717_peerj_13429
crossref_primary_10_1016_j_envexpbot_2022_105141
crossref_primary_10_1007_s11738_024_03733_w
crossref_primary_10_1007_s11694_025_03520_2
crossref_primary_10_1371_journal_pone_0292076
crossref_primary_10_1016_j_celrep_2024_114786
crossref_primary_10_3389_fpls_2025_1590484
crossref_primary_10_3390_stresses5010023
crossref_primary_10_1016_j_apsb_2023_08_011
crossref_primary_10_1093_pcp_pcac114
crossref_primary_10_3390_ijms25179289
crossref_primary_10_1016_j_heliyon_2024_e34152
crossref_primary_10_3390_ijms252212188
crossref_primary_10_1515_biol_2025_1103
crossref_primary_10_3390_f14061196
crossref_primary_10_3390_ijms26094269
crossref_primary_10_3390_atmos15030363
crossref_primary_10_3390_plants12091910
crossref_primary_10_1016_j_hpj_2025_06_005
crossref_primary_10_1016_j_plaphy_2024_108423
crossref_primary_10_1007_s10725_024_01163_9
crossref_primary_10_1016_j_postharvbio_2024_113338
crossref_primary_10_1016_j_jconrel_2024_11_028
crossref_primary_10_1016_j_jia_2024_03_067
crossref_primary_10_1093_jxb_erad464
crossref_primary_10_1111_nph_70497
crossref_primary_10_3390_horticulturae11050515
crossref_primary_10_3390_plants13071033
crossref_primary_10_1016_j_jgg_2023_08_007
crossref_primary_10_1016_j_jksus_2024_103575
crossref_primary_10_3390_ijms242216415
crossref_primary_10_1016_j_scienta_2025_114302
crossref_primary_10_1016_j_envexpbot_2024_105918
crossref_primary_10_1111_pbi_70134
crossref_primary_10_1038_s41576_024_00710_4
crossref_primary_10_1007_s00299_024_03333_5
crossref_primary_10_1007_s40626_024_00338_z
crossref_primary_10_3389_fpls_2022_925863
crossref_primary_10_1093_hr_uhac198
crossref_primary_10_1093_plphys_kiae325
crossref_primary_10_3390_antiox14050602
crossref_primary_10_1016_j_plaphy_2023_108313
crossref_primary_10_1016_j_hpj_2025_08_006
crossref_primary_10_1093_plphys_kiae327
crossref_primary_10_1111_pbi_70371
crossref_primary_10_3390_horticulturae9091025
crossref_primary_10_3390_genes15111482
crossref_primary_10_1016_j_plaphy_2023_107692
crossref_primary_10_1134_S1021443725600448
crossref_primary_10_1134_S1021443723601350
crossref_primary_10_3390_agriculture14081212
crossref_primary_10_3390_ijms25179261
crossref_primary_10_3390_horticulturae11070773
crossref_primary_10_1016_j_eti_2024_103544
crossref_primary_10_3389_fpls_2022_822618
crossref_primary_10_1007_s00299_025_03574_y
crossref_primary_10_1007_s42979_023_02076_6
crossref_primary_10_1016_j_fnutr_2025_100016
crossref_primary_10_3389_fpls_2024_1349401
crossref_primary_10_3389_fpls_2024_1471044
crossref_primary_10_3389_fpls_2025_1629794
crossref_primary_10_52711_0975_4385_2025_00001
crossref_primary_10_1038_s41477_023_01480_3
crossref_primary_10_1111_tpj_70389
crossref_primary_10_1080_15592324_2025_2479513
crossref_primary_10_1007_s11274_023_03837_4
crossref_primary_10_1111_tpj_16420
crossref_primary_10_1080_15592324_2024_2391134
crossref_primary_10_3390_plants13152064
crossref_primary_10_1007_s44154_024_00188_4
crossref_primary_10_3390_horticulturae11010044
crossref_primary_10_3390_ijms24032401
crossref_primary_10_1371_journal_pone_0323613
crossref_primary_10_1016_j_indcrop_2025_120567
crossref_primary_10_1016_j_scienta_2024_113114
crossref_primary_10_1016_j_pld_2024_07_009
crossref_primary_10_1007_s13580_024_00659_7
crossref_primary_10_1016_j_stress_2024_100613
crossref_primary_10_1093_hr_uhac174
crossref_primary_10_3390_ijms25052470
crossref_primary_10_1093_hr_uhac171
crossref_primary_10_1016_j_gene_2024_149085
crossref_primary_10_1093_plphys_kiae545
crossref_primary_10_3390_genes13030486
crossref_primary_10_1073_pnas_2302901120
crossref_primary_10_1186_s12302_023_00788_3
crossref_primary_10_1002_ldr_5011
crossref_primary_10_1007_s10725_024_01176_4
crossref_primary_10_3390_ijms232314501
crossref_primary_10_1007_s42994_023_00101_z
crossref_primary_10_1016_j_indcrop_2025_121641
crossref_primary_10_1111_jipb_13906
crossref_primary_10_1093_aobpla_plad005
crossref_primary_10_1093_jxb_erad477
crossref_primary_10_1111_ppl_14195
crossref_primary_10_3389_fevo_2023_1113823
crossref_primary_10_3389_fpls_2024_1515944
crossref_primary_10_3390_f13101689
crossref_primary_10_3389_fpls_2022_969896
crossref_primary_10_1016_j_envexpbot_2025_106088
crossref_primary_10_1016_j_gene_2024_149076
crossref_primary_10_3389_fpls_2023_1132198
crossref_primary_10_3390_plants14192954
crossref_primary_10_1093_plphys_kiad202
crossref_primary_10_3390_plants14152292
crossref_primary_10_3390_ijms242216450
crossref_primary_10_3390_ijms252111437
crossref_primary_10_1111_tpj_16761
crossref_primary_10_1016_j_plaphy_2022_07_022
crossref_primary_10_3389_fpls_2022_1105598
crossref_primary_10_3389_fpls_2022_870586
crossref_primary_10_1016_j_molp_2022_06_008
crossref_primary_10_3390_plants14162582
crossref_primary_10_1007_s11105_025_01563_9
crossref_primary_10_1016_j_stress_2025_100834
crossref_primary_10_3389_fpls_2022_1025122
crossref_primary_10_3389_fpls_2023_1182977
crossref_primary_10_3389_fpls_2022_940540
crossref_primary_10_1002_fsn3_4765
crossref_primary_10_1016_j_cell_2023_11_038
crossref_primary_10_1016_j_foodres_2024_114031
crossref_primary_10_3389_fpls_2023_1302046
crossref_primary_10_3390_ijms232314845
crossref_primary_10_1016_j_xplc_2025_101487
crossref_primary_10_1016_j_indcrop_2023_116688
crossref_primary_10_1016_j_plaphy_2022_07_027
crossref_primary_10_1016_j_ijbiomac_2025_145399
crossref_primary_10_3390_nano13192684
crossref_primary_10_3390_plants14152303
crossref_primary_10_1111_pbi_14526
crossref_primary_10_3390_ijms23115957
crossref_primary_10_1093_aobpla_plae034
crossref_primary_10_3390_antiox14091067
crossref_primary_10_1038_s44264_024_00026_0
crossref_primary_10_3389_fpls_2024_1438811
crossref_primary_10_1038_s42003_025_07857_8
crossref_primary_10_7554_eLife_99352_3
crossref_primary_10_1016_j_ijbiomac_2025_139971
crossref_primary_10_1016_j_foodchem_2024_141100
crossref_primary_10_1016_j_indcrop_2023_116679
crossref_primary_10_1186_s12870_024_05059_8
crossref_primary_10_1186_s12864_024_10036_4
crossref_primary_10_3390_plants11091100
crossref_primary_10_1016_j_plaphy_2025_110380
crossref_primary_10_3390_agriculture14010080
crossref_primary_10_1016_j_envexpbot_2024_105797
crossref_primary_10_3390_ijms25042305
crossref_primary_10_1016_j_plaphy_2023_01_005
crossref_primary_10_3390_biology11050678
crossref_primary_10_3389_fpls_2023_1146663
crossref_primary_10_1080_15592324_2025_2451700
crossref_primary_10_1111_tpj_16984
crossref_primary_10_3390_ijms232415552
crossref_primary_10_1007_s11686_024_00977_x
crossref_primary_10_1007_s13744_024_01221_x
crossref_primary_10_1093_hr_uhae157
crossref_primary_10_1016_j_hpj_2024_02_011
crossref_primary_10_1186_s13059_024_03408_2
crossref_primary_10_1007_s11103_025_01598_2
crossref_primary_10_1093_plphys_kiad136
crossref_primary_10_3390_plants14121803
crossref_primary_10_3390_f14091784
crossref_primary_10_3390_ijms232113027
crossref_primary_10_3390_plants14091289
crossref_primary_10_1016_j_bios_2023_115300
crossref_primary_10_3390_ijms24129793
crossref_primary_10_1111_pbi_14305
crossref_primary_10_3390_ijms25179686
crossref_primary_10_1111_nph_18644
crossref_primary_10_1016_j_jare_2024_11_019
crossref_primary_10_1007_s10725_025_01339_x
crossref_primary_10_3390_ijms25105199
crossref_primary_10_3389_fpls_2022_857396
crossref_primary_10_1016_j_plaphy_2025_110365
crossref_primary_10_3390_biom15081103
crossref_primary_10_1111_pce_15504
crossref_primary_10_1146_annurev_arplant_070122_030236
crossref_primary_10_1371_journal_pone_0318757
crossref_primary_10_1093_hr_uhad051
crossref_primary_10_3390_plants14162568
crossref_primary_10_1016_j_molp_2022_06_001
crossref_primary_10_3390_ijms241411828
crossref_primary_10_3390_ijms25147626
crossref_primary_10_3390_biology12020217
crossref_primary_10_1002_jsfa_70032
crossref_primary_10_1016_j_molp_2022_06_003
crossref_primary_10_3390_cells11132039
crossref_primary_10_1002_advs_202417212
crossref_primary_10_3390_f13111835
crossref_primary_10_1111_nph_18647
crossref_primary_10_1186_s12864_024_11065_9
crossref_primary_10_1186_s43897_023_00073_0
crossref_primary_10_1016_j_rsci_2023_10_002
crossref_primary_10_1038_s41467_024_49844_3
crossref_primary_10_3390_agronomy15071570
crossref_primary_10_1016_j_biotechadv_2025_108691
crossref_primary_10_1038_s41467_023_43177_3
crossref_primary_10_1016_j_plaphy_2024_109086
crossref_primary_10_3390_ijms24076727
crossref_primary_10_1007_s00425_023_04141_z
crossref_primary_10_3389_fpls_2023_1248476
crossref_primary_10_3390_ijms252010937
crossref_primary_10_1186_s12870_024_04916_w
crossref_primary_10_1016_j_plaphy_2025_110191
crossref_primary_10_3390_agronomy13030728
crossref_primary_10_3390_ijms24065822
crossref_primary_10_1016_j_envexpbot_2024_105763
crossref_primary_10_1093_jxb_erac418
crossref_primary_10_3390_ijms26083792
crossref_primary_10_1007_s42729_025_02433_9
crossref_primary_10_3390_agronomy14122995
crossref_primary_10_3390_cells14030176
crossref_primary_10_1080_07388551_2023_2299766
crossref_primary_10_1016_j_jenvman_2023_119488
crossref_primary_10_3390_f14020383
crossref_primary_10_1111_nph_19552
crossref_primary_10_1016_j_envexpbot_2024_105988
crossref_primary_10_1016_j_envexpbot_2024_105989
crossref_primary_10_1002_cbdv_202200247
crossref_primary_10_1007_s00299_023_03087_6
crossref_primary_10_1186_s43897_025_00169_9
crossref_primary_10_3390_plants13101345
crossref_primary_10_1016_j_plaphy_2025_110189
crossref_primary_10_1016_j_scienta_2023_112594
crossref_primary_10_1007_s10725_023_00992_4
crossref_primary_10_3389_fpls_2022_1026421
crossref_primary_10_1021_acssensors_5c01494
crossref_primary_10_1016_j_envexpbot_2022_105190
crossref_primary_10_3390_genes15070870
crossref_primary_10_1016_j_ygeno_2024_110926
crossref_primary_10_1038_s41477_024_01700_4
crossref_primary_10_3389_fpls_2023_1155797
crossref_primary_10_3390_ijms252010952
crossref_primary_10_1007_s44372_025_00346_6
crossref_primary_10_1093_plphys_kiaf126
crossref_primary_10_1016_j_plaphy_2023_107854
crossref_primary_10_3389_fpls_2022_981029
crossref_primary_10_1111_nph_19787
crossref_primary_10_3390_horticulturae9070731
crossref_primary_10_3390_ijms23042085
crossref_primary_10_1016_j_stress_2025_100893
crossref_primary_10_3390_ijms241914406
crossref_primary_10_1134_S1062359024610942
crossref_primary_10_1080_15592324_2023_2241165
crossref_primary_10_1098_rstb_2024_0252
crossref_primary_10_1016_j_molp_2024_08_006
crossref_primary_10_1016_j_cbpa_2024_111610
crossref_primary_10_3390_ijms23147988
crossref_primary_10_3390_plants11182444
crossref_primary_10_1111_nph_18217
crossref_primary_10_1016_j_cej_2024_153913
crossref_primary_10_3390_su17177602
crossref_primary_10_1016_j_envexpbot_2024_105782
crossref_primary_10_1007_s00299_024_03278_9
crossref_primary_10_1093_plphys_kiae497
crossref_primary_10_1016_j_bcab_2023_102677
crossref_primary_10_3389_fgene_2022_842868
crossref_primary_10_1016_j_envexpbot_2024_105769
crossref_primary_10_3390_ijms231810570
crossref_primary_10_3390_plants11091172
crossref_primary_10_1007_s42729_024_01956_x
crossref_primary_10_1016_j_bbrc_2025_152581
crossref_primary_10_1093_hr_uhae181
crossref_primary_10_1007_s11103_025_01630_5
crossref_primary_10_3389_fpls_2022_859374
crossref_primary_10_3390_plants14081215
crossref_primary_10_1098_rstb_2024_0241
crossref_primary_10_1021_acssensors_5c00184
crossref_primary_10_1007_s44154_022_00050_5
crossref_primary_10_1016_j_envexpbot_2024_105774
crossref_primary_10_3390_agronomy13071691
crossref_primary_10_1016_j_plantsci_2025_112772
crossref_primary_10_1016_j_cell_2025_07_027
crossref_primary_10_1093_plphys_kiaf105
crossref_primary_10_1016_j_snb_2025_137456
crossref_primary_10_1038_s41598_024_58161_0
crossref_primary_10_3390_plants13020201
crossref_primary_10_1016_j_cj_2024_12_020
crossref_primary_10_1016_j_cub_2023_10_028
crossref_primary_10_1111_nph_20355
crossref_primary_10_1007_s10343_025_01128_6
crossref_primary_10_3389_fgene_2024_1394091
crossref_primary_10_1007_s11032_024_01518_0
crossref_primary_10_3390_genes15060693
crossref_primary_10_3390_ijms251910589
crossref_primary_10_1093_plcell_koae193
crossref_primary_10_1007_s11103_024_01417_0
crossref_primary_10_1016_j_heliyon_2024_e26099
crossref_primary_10_3390_plants12152865
crossref_primary_10_3390_ijms25168717
crossref_primary_10_3389_fpls_2024_1456414
crossref_primary_10_3389_fpls_2022_968714
crossref_primary_10_1093_gbe_evaf056
crossref_primary_10_3390_plants12071532
crossref_primary_10_1016_j_indcrop_2023_117375
crossref_primary_10_1111_ppl_70214
crossref_primary_10_1016_j_plaphy_2025_109568
crossref_primary_10_1016_j_plaphy_2025_110307
crossref_primary_10_1111_nph_19357
crossref_primary_10_32604_phyton_2024_047739
crossref_primary_10_3389_fpls_2022_986365
crossref_primary_10_1093_jxb_eraf277
crossref_primary_10_3389_fpls_2022_870970
crossref_primary_10_3390_agronomy13071877
crossref_primary_10_3390_plants12233975
crossref_primary_10_1111_ppl_13689
crossref_primary_10_1186_s12870_024_05028_1
crossref_primary_10_1007_s00344_024_11473_x
crossref_primary_10_1007_s11104_025_07892_8
crossref_primary_10_1093_gigascience_giad053
crossref_primary_10_1016_j_postharvbio_2025_113819
crossref_primary_10_1016_j_jprot_2025_105526
crossref_primary_10_3390_horticulturae8080743
crossref_primary_10_1016_j_heliyon_2024_e32310
crossref_primary_10_1016_j_pbi_2024_102662
crossref_primary_10_1016_j_indcrop_2023_116278
crossref_primary_10_3390_ijms23094769
crossref_primary_10_1007_s00344_023_11082_0
crossref_primary_10_1016_j_gene_2025_149609
crossref_primary_10_3389_fpls_2022_1066088
crossref_primary_10_1111_tpj_16901
crossref_primary_10_3390_plants13050710
crossref_primary_10_3390_f15010125
crossref_primary_10_7554_eLife_99352
crossref_primary_10_3390_ijms26051982
crossref_primary_10_1038_s41467_023_41657_0
crossref_primary_10_1186_s12870_023_04674_1
crossref_primary_10_1016_j_indcrop_2024_119854
crossref_primary_10_3389_fpls_2024_1387575
crossref_primary_10_1016_j_ijbiomac_2025_144687
crossref_primary_10_1038_s41598_024_61907_5
crossref_primary_10_1093_molbev_msae099
crossref_primary_10_3389_fpls_2022_1062952
crossref_primary_10_1038_s41586_024_07445_6
crossref_primary_10_3390_ijms241310915
crossref_primary_10_3389_fgene_2024_1401011
crossref_primary_10_1038_s41598_025_93421_7
crossref_primary_10_3390_ijms252211891
crossref_primary_10_1016_j_cj_2024_04_008
crossref_primary_10_1111_pce_14818
crossref_primary_10_3390_ijms252211896
crossref_primary_10_3390_ijms232415721
crossref_primary_10_1007_s12268_025_2486_9
crossref_primary_10_1016_j_scienta_2025_114031
crossref_primary_10_1111_jipb_13260
crossref_primary_10_1186_s12864_025_11585_y
crossref_primary_10_3390_genes14071471
crossref_primary_10_1016_j_plantsci_2024_112035
crossref_primary_10_1016_j_plantsci_2024_112032
crossref_primary_10_3390_plants13020245
crossref_primary_10_1007_s10725_024_01248_5
crossref_primary_10_3390_ijms25073941
crossref_primary_10_1016_j_ijbiomac_2022_12_150
crossref_primary_10_1021_acs_jafc_4c10038
crossref_primary_10_3390_ijms231911477
crossref_primary_10_1016_j_csbj_2023_10_024
crossref_primary_10_3389_fpls_2023_1121780
crossref_primary_10_3390_plants12213755
crossref_primary_10_3390_f15010138
crossref_primary_10_3390_plants13010046
crossref_primary_10_1007_s00425_023_04292_z
crossref_primary_10_3389_fpls_2022_974598
crossref_primary_10_3390_horticulturae9080921
crossref_primary_10_1016_j_cpb_2024_100410
crossref_primary_10_1016_j_jenvman_2025_125423
crossref_primary_10_3389_fpls_2022_845107
crossref_primary_10_3389_fpls_2022_979801
crossref_primary_10_1111_jipb_13457
crossref_primary_10_1080_07388551_2023_2165900
crossref_primary_10_1111_jipb_13451
crossref_primary_10_1016_j_sajb_2022_04_045
crossref_primary_10_3390_plants13070994
crossref_primary_10_3390_plants13131831
crossref_primary_10_1016_j_plaphy_2025_109594
crossref_primary_10_1016_j_ecoenv_2023_115214
crossref_primary_10_3389_fpls_2025_1626844
crossref_primary_10_1093_jxb_eraf079
crossref_primary_10_1016_j_plantsci_2023_111900
crossref_primary_10_3390_plants11212858
crossref_primary_10_1038_s41467_023_36129_4
crossref_primary_10_3390_ijms26062603
crossref_primary_10_1016_j_envpol_2022_120658
crossref_primary_10_1007_s00344_023_11103_y
crossref_primary_10_3389_fgene_2023_1201535
crossref_primary_10_3389_fpls_2022_905348
crossref_primary_10_1016_j_rhisph_2024_100987
crossref_primary_10_1111_ppl_70429
crossref_primary_10_1016_j_plantsci_2024_112294
crossref_primary_10_1186_s12870_025_06680_x
crossref_primary_10_1186_s40168_025_02154_2
crossref_primary_10_1186_s12870_023_04563_7
crossref_primary_10_3390_plants14020294
crossref_primary_10_1016_j_plaphy_2025_109587
crossref_primary_10_3389_fpls_2025_1602440
crossref_primary_10_1007_s00425_025_04707_z
crossref_primary_10_3390_genes13101803
crossref_primary_10_3390_ijms241914802
crossref_primary_10_1038_s41564_024_01720_y
crossref_primary_10_3390_plants11212877
crossref_primary_10_1007_s42729_024_01793_y
crossref_primary_10_3389_fpls_2022_1042084
crossref_primary_10_1093_treephys_tpaf083
crossref_primary_10_1186_s12870_023_04112_2
crossref_primary_10_3390_w15010194
crossref_primary_10_1016_j_plaphy_2024_109269
crossref_primary_10_1021_acs_jafc_5c01237
crossref_primary_10_1186_s12864_024_10844_8
crossref_primary_10_1016_j_plaphy_2024_109034
crossref_primary_10_3390_ijms251810093
crossref_primary_10_1016_j_plaphy_2025_109574
crossref_primary_10_3390_biology14091293
crossref_primary_10_1016_j_plaphy_2025_110326
crossref_primary_10_1007_s10725_024_01237_8
crossref_primary_10_1186_s12870_024_05876_x
crossref_primary_10_1038_s41598_025_13827_1
crossref_primary_10_3389_fpls_2024_1436651
crossref_primary_10_1007_s42729_024_01936_1
crossref_primary_10_1093_jxb_eraf099
crossref_primary_10_3389_fpls_2024_1450936
crossref_primary_10_1007_s40502_024_00818_z
crossref_primary_10_3390_ijms25137196
crossref_primary_10_3389_fpls_2024_1489380
crossref_primary_10_3390_agriculture15030318
crossref_primary_10_3390_ijms23094542
crossref_primary_10_3390_agronomy14010134
crossref_primary_10_1016_j_ygeno_2024_110981
crossref_primary_10_1016_j_heliyon_2023_e13536
crossref_primary_10_1016_j_ijbiomac_2025_140053
crossref_primary_10_1186_s40538_025_00839_2
crossref_primary_10_1111_jipb_13417
crossref_primary_10_17221_83_2024_PPS
crossref_primary_10_3390_ijms23116017
crossref_primary_10_1017_S1742170523000297
crossref_primary_10_3389_fpls_2023_1161245
crossref_primary_10_1094_MPMI_11_21_0281_FI
crossref_primary_10_3389_fpls_2023_1149114
crossref_primary_10_3389_fpls_2025_1527952
crossref_primary_10_1093_jxb_erae232
crossref_primary_10_1111_nph_70571
crossref_primary_10_1186_s12870_024_05982_w
crossref_primary_10_2478_fhort_2022_0005
crossref_primary_10_1111_ppl_14007
crossref_primary_10_3390_ijms26052333
crossref_primary_10_1016_j_stress_2025_101006
crossref_primary_10_1016_j_plaphy_2025_109967
crossref_primary_10_1111_ppl_14487
crossref_primary_10_1002_adbi_202400589
crossref_primary_10_1007_s00425_023_04237_6
crossref_primary_10_1016_j_plaphy_2024_109450
crossref_primary_10_3390_plants13212962
crossref_primary_10_1186_s12870_025_06132_6
crossref_primary_10_1016_j_scienta_2025_114214
crossref_primary_10_1186_s12870_023_04639_4
crossref_primary_10_3389_fpls_2025_1635078
crossref_primary_10_3390_plants14142162
crossref_primary_10_1007_s13562_021_00751_4
crossref_primary_10_1016_j_jplph_2025_154430
crossref_primary_10_1111_jac_70093
crossref_primary_10_3390_ijms26167790
crossref_primary_10_1016_j_indcrop_2025_120806
crossref_primary_10_1186_s12951_024_02500_w
crossref_primary_10_1016_j_envexpbot_2024_106081
crossref_primary_10_3390_cimb47060421
crossref_primary_10_1111_ppl_14015
crossref_primary_10_1111_jipb_13882
crossref_primary_10_3389_fpls_2022_1089109
crossref_primary_10_3390_genes14040811
crossref_primary_10_3390_plants14142191
crossref_primary_10_3390_cells11192935
crossref_primary_10_1111_ppl_70162
crossref_primary_10_3389_fpls_2023_1307390
crossref_primary_10_3390_agronomy14092043
crossref_primary_10_1016_j_foodchem_2024_138722
crossref_primary_10_1093_jxb_erac073
crossref_primary_10_1093_jxb_erad161
crossref_primary_10_3389_fpls_2023_1068296
crossref_primary_10_3390_ijms25116226
crossref_primary_10_1007_s10725_023_01067_0
crossref_primary_10_1007_s10681_022_03102_z
crossref_primary_10_1016_j_plaphy_2025_109705
crossref_primary_10_1111_jipb_13677
crossref_primary_10_1016_j_cj_2023_05_002
crossref_primary_10_1111_aab_70049
crossref_primary_10_1016_j_cj_2023_05_005
crossref_primary_10_1111_tpj_16183
crossref_primary_10_3390_agronomy14102368
crossref_primary_10_1016_j_scitotenv_2024_171433
crossref_primary_10_1016_j_chemosphere_2023_139230
crossref_primary_10_1007_s11356_023_27362_x
crossref_primary_10_1016_j_cej_2025_165545
crossref_primary_10_3389_fpls_2023_1175878
crossref_primary_10_3390_ijms241310534
crossref_primary_10_1016_j_ijbiomac_2023_128617
crossref_primary_10_1016_j_plaphy_2024_108384
crossref_primary_10_7717_peerj_19487
crossref_primary_10_3390_life13041056
crossref_primary_10_3390_plants13081151
crossref_primary_10_3390_ijms23179737
crossref_primary_10_1016_j_stress_2025_101017
crossref_primary_10_3390_life14010161
crossref_primary_10_1111_pce_15198
crossref_primary_10_1111_jipb_13662
crossref_primary_10_1111_ppl_14277
crossref_primary_10_3390_plants13131861
crossref_primary_10_1016_j_plaphy_2023_108030
crossref_primary_10_1016_j_talanta_2023_124402
crossref_primary_10_3389_fpls_2025_1547526
crossref_primary_10_3390_plants14020218
crossref_primary_10_1111_tpj_17258
crossref_primary_10_3390_ijms231710015
crossref_primary_10_3390_foods13060887
crossref_primary_10_1016_j_indcrop_2022_115828
crossref_primary_10_1093_jxb_eraf124
crossref_primary_10_1007_s42729_022_01090_6
crossref_primary_10_1016_j_jplph_2025_154487
crossref_primary_10_1016_j_agwat_2024_108965
crossref_primary_10_1016_j_ijbiomac_2025_143615
crossref_primary_10_3389_fpls_2024_1391051
crossref_primary_10_1016_j_bbagen_2024_130633
crossref_primary_10_1111_pce_15168
crossref_primary_10_3390_life13020559
crossref_primary_10_1111_jipb_13611
crossref_primary_10_1016_j_plaphy_2024_109408
crossref_primary_10_1007_s10725_024_01197_z
crossref_primary_10_1016_j_indcrop_2024_119993
crossref_primary_10_1038_s41598_023_32114_5
crossref_primary_10_1016_j_plaphy_2025_109766
crossref_primary_10_1111_ppl_70154
crossref_primary_10_3389_fmicb_2024_1358137
crossref_primary_10_1016_j_jplph_2024_154373
crossref_primary_10_1039_D2EN00954D
crossref_primary_10_1016_j_plaphy_2023_108264
crossref_primary_10_3390_f14050995
crossref_primary_10_1016_j_scienta_2025_114014
crossref_primary_10_1111_ppl_70390
crossref_primary_10_1016_j_stress_2025_101034
crossref_primary_10_3390_agronomy13123002
crossref_primary_10_3389_fpls_2023_1296286
crossref_primary_10_1111_ppl_14218
crossref_primary_10_1007_s00425_023_04126_y
crossref_primary_10_1111_ppl_14458
crossref_primary_10_3390_ijms23148044
crossref_primary_10_1016_j_coesh_2025_100653
crossref_primary_10_3389_fevo_2025_1550290
crossref_primary_10_1016_j_scienta_2022_111559
crossref_primary_10_1111_ppl_14210
crossref_primary_10_1016_j_plaphy_2024_108567
crossref_primary_10_1111_ppl_14454
crossref_primary_10_1016_j_plaphy_2024_108572
crossref_primary_10_3390_antiox13091088
crossref_primary_10_1111_tpj_17232
crossref_primary_10_7717_peerj_14602
crossref_primary_10_1016_j_bios_2024_117039
crossref_primary_10_1088_1755_1315_1487_1_012063
crossref_primary_10_1111_jipb_13635
crossref_primary_10_1007_s10725_024_01260_9
crossref_primary_10_1007_s00425_025_04665_6
crossref_primary_10_3389_fpls_2024_1283912
crossref_primary_10_3390_ijms251910487
crossref_primary_10_1007_s00299_025_03557_z
crossref_primary_10_3390_ijms25126464
crossref_primary_10_3389_fpls_2023_1323841
crossref_primary_10_1111_pce_15147
crossref_primary_10_3390_ijms25084331
crossref_primary_10_3389_fpls_2024_1403220
crossref_primary_10_1016_j_plaphy_2025_109989
crossref_primary_10_1007_s00299_024_03391_9
crossref_primary_10_1007_s11103_023_01368_y
crossref_primary_10_1007_s44154_022_00069_8
crossref_primary_10_1111_jipb_13873
crossref_primary_10_3389_fgene_2025_1599242
crossref_primary_10_1002_agt2_288
crossref_primary_10_1016_j_snb_2023_134499
crossref_primary_10_1016_j_plaphy_2025_109730
crossref_primary_10_1016_j_scitotenv_2024_174503
crossref_primary_10_3389_fpls_2023_1278895
crossref_primary_10_3390_ijms24087290
crossref_primary_10_1186_s12870_024_05916_6
crossref_primary_10_3390_ijms24087051
crossref_primary_10_3390_su152115569
crossref_primary_10_1111_tpj_70414
crossref_primary_10_1007_s10725_023_01089_8
crossref_primary_10_1016_j_ijbiomac_2024_139058
crossref_primary_10_3389_fpls_2023_1265339
crossref_primary_10_3390_horticulturae11040408
crossref_primary_10_3390_agronomy14040843
crossref_primary_10_1007_s13562_024_00895_z
crossref_primary_10_1016_j_scienta_2023_111836
crossref_primary_10_1111_jipb_13622
crossref_primary_10_1016_j_plaphy_2025_109736
crossref_primary_10_3390_ijms23095236
crossref_primary_10_1007_s00122_023_04461_4
crossref_primary_10_1007_s00425_023_04070_x
crossref_primary_10_1002_adma_202402745
crossref_primary_10_1111_tpj_16122
crossref_primary_10_32604_phyton_2023_043306
crossref_primary_10_3390_ijms25021227
crossref_primary_10_1016_j_molp_2025_06_012
crossref_primary_10_1111_ppl_14082
crossref_primary_10_3390_ijms24109099
crossref_primary_10_1186_s12870_024_04981_1
crossref_primary_10_3390_agronomy14040659
crossref_primary_10_1186_s12870_022_03663_0
crossref_primary_10_1016_j_scitotenv_2023_169009
crossref_primary_10_3389_fpls_2024_1391248
crossref_primary_10_1016_j_tplants_2023_03_006
crossref_primary_10_15316_selcukjafsci_1611943
crossref_primary_10_1007_s10265_023_01454_8
crossref_primary_10_1016_j_plantsci_2025_112523
crossref_primary_10_3389_fpls_2025_1518846
crossref_primary_10_1016_j_scienta_2022_111506
crossref_primary_10_3389_fpls_2023_1198930
crossref_primary_10_3390_plants14152386
crossref_primary_10_1093_plphys_kiae406
crossref_primary_10_1134_S1021443725600370
crossref_primary_10_1093_plphys_kiad315
crossref_primary_10_1186_s42397_024_00171_4
crossref_primary_10_1038_s44319_025_00556_9
crossref_primary_10_1016_j_gene_2023_147537
crossref_primary_10_1111_pbi_14367
crossref_primary_10_1371_journal_pone_0330439
crossref_primary_10_2183_pjab_98_024
crossref_primary_10_1016_j_plantsci_2023_111669
crossref_primary_10_1038_s41598_024_71847_9
crossref_primary_10_3389_fpls_2025_1552092
crossref_primary_10_1186_s12284_025_00787_3
crossref_primary_10_3389_fpls_2023_1303667
crossref_primary_10_3390_plants13121649
crossref_primary_10_1093_plcell_koad307
crossref_primary_10_1016_j_envexpbot_2023_105574
crossref_primary_10_1016_j_plantsci_2025_112750
crossref_primary_10_1016_j_plaphy_2024_108767
crossref_primary_10_1038_s41467_024_50290_4
crossref_primary_10_1038_s41467_025_57550_x
crossref_primary_10_1007_s11033_022_08114_5
crossref_primary_10_3389_fpls_2022_978066
crossref_primary_10_1007_s11032_024_01534_0
crossref_primary_10_1007_s44154_024_00167_9
crossref_primary_10_1016_j_impact_2022_100420
crossref_primary_10_3390_plants13152142
crossref_primary_10_1016_j_cj_2023_07_002
crossref_primary_10_1016_j_ecoenv_2025_118753
crossref_primary_10_1093_jxb_erad325
crossref_primary_10_3390_agriculture12111879
crossref_primary_10_1007_s11032_023_01385_1
crossref_primary_10_3390_ijms26157139
crossref_primary_10_3390_ijms26073455
crossref_primary_10_1007_s13562_024_00877_1
crossref_primary_10_1016_j_plaphy_2025_110098
crossref_primary_10_1016_j_plaphy_2025_110091
crossref_primary_10_1007_s11676_025_01859_2
crossref_primary_10_3390_f16050789
crossref_primary_10_1186_s12870_023_04198_8
crossref_primary_10_1016_j_envexpbot_2023_105541
crossref_primary_10_3390_plants12132558
crossref_primary_10_1093_plphys_kiac445
crossref_primary_10_1093_plphys_kiad532
crossref_primary_10_1016_j_indcrop_2023_116862
crossref_primary_10_1016_j_jgg_2025_03_007
crossref_primary_10_1111_jipb_13829
crossref_primary_10_1007_s00344_023_11177_8
crossref_primary_10_1016_j_jgg_2024_09_022
crossref_primary_10_1111_jipb_13828
crossref_primary_10_1111_jipb_13827
crossref_primary_10_3389_fevo_2022_975771
crossref_primary_10_1111_pbi_14147
crossref_primary_10_1016_j_ijbiomac_2025_147172
crossref_primary_10_3390_horticulturae8050429
crossref_primary_10_3389_fpls_2022_837152
crossref_primary_10_1038_s41598_024_54623_7
crossref_primary_10_1007_s00344_023_11033_9
crossref_primary_10_3390_plants13121666
crossref_primary_10_1093_hr_uhac244
crossref_primary_10_3389_fpls_2024_1475500
crossref_primary_10_3390_ijms24043623
crossref_primary_10_1016_j_stress_2024_100700
crossref_primary_10_3389_fpls_2023_1271137
crossref_primary_10_3390_ijms23169301
crossref_primary_10_1016_j_envexpbot_2023_105312
crossref_primary_10_1016_j_indcrop_2024_119593
crossref_primary_10_1186_s12864_024_10369_0
crossref_primary_10_1016_j_pmpp_2023_102191
crossref_primary_10_1016_j_ijbiomac_2025_147385
crossref_primary_10_3389_fpls_2022_976094
crossref_primary_10_1186_s12864_025_11646_2
crossref_primary_10_1016_j_aca_2024_343478
crossref_primary_10_1016_j_molp_2025_07_011
crossref_primary_10_1007_s00299_023_03094_7
crossref_primary_10_1111_tpj_16568
crossref_primary_10_3390_plants12234058
crossref_primary_10_1007_s11033_023_08640_w
crossref_primary_10_1111_pce_15566
crossref_primary_10_3389_fpls_2025_1545187
crossref_primary_10_1007_s11033_022_07999_6
crossref_primary_10_1016_j_csbj_2024_09_010
crossref_primary_10_1016_j_bbrc_2024_150955
crossref_primary_10_1111_pbi_70017
crossref_primary_10_1038_s41598_025_94873_7
crossref_primary_10_1093_plphys_kiad114
crossref_primary_10_1111_nph_70123
crossref_primary_10_1007_s11240_025_03133_z
crossref_primary_10_1021_acs_jafc_5c07100
crossref_primary_10_1016_j_ijbiomac_2024_137294
crossref_primary_10_3390_ijms25179383
crossref_primary_10_3390_ijms26189164
crossref_primary_10_1093_plcell_koac263
crossref_primary_10_3390_ijms26073245
crossref_primary_10_3389_fpls_2022_1011939
crossref_primary_10_3390_plants14142119
crossref_primary_10_1007_s00122_025_04933_9
crossref_primary_10_1007_s11274_025_04488_3
crossref_primary_10_1007_s11103_022_01282_9
crossref_primary_10_3390_ijms25074111
crossref_primary_10_1007_s10725_025_01372_w
crossref_primary_10_1007_s42729_025_02561_2
crossref_primary_10_1016_j_gene_2025_149235
crossref_primary_10_1016_j_plaphy_2024_108721
crossref_primary_10_1186_s12870_025_06689_2
crossref_primary_10_3390_su162310619
crossref_primary_10_1016_j_cj_2023_06_001
crossref_primary_10_1016_j_jhazmat_2025_138687
crossref_primary_10_1016_j_cj_2023_06_002
crossref_primary_10_1039_D2EN00688J
crossref_primary_10_1016_j_fbio_2024_104360
crossref_primary_10_1093_hr_uhac291
crossref_primary_10_1038_s41467_023_38464_y
crossref_primary_10_3389_fpls_2024_1371895
crossref_primary_10_1007_s00299_025_03586_8
crossref_primary_10_1111_pce_14455
crossref_primary_10_3390_ijms24010542
crossref_primary_10_1016_j_stress_2024_100733
crossref_primary_10_1002_advs_202307650
crossref_primary_10_1186_s40168_025_02126_6
crossref_primary_10_1111_nph_19703
crossref_primary_10_17221_61_2022_PPS
crossref_primary_10_1016_j_plaphy_2024_108972
crossref_primary_10_1007_s12298_024_01455_4
crossref_primary_10_1111_pbi_14349
crossref_primary_10_3390_genes16030344
crossref_primary_10_3390_plants14081180
crossref_primary_10_1007_s00299_024_03236_5
crossref_primary_10_3390_ijms232113469
crossref_primary_10_1093_plcell_koac248
crossref_primary_10_1016_j_ijbiomac_2025_141829
crossref_primary_10_1080_01904167_2025_2503982
crossref_primary_10_3389_fpls_2024_1393663
crossref_primary_10_1007_s10142_025_01633_x
crossref_primary_10_1111_pce_15314
crossref_primary_10_1111_pbi_70003
crossref_primary_10_3390_genes14112006
crossref_primary_10_1007_s12298_025_01585_3
crossref_primary_10_1016_j_plaphy_2024_108507
crossref_primary_10_3389_fmicb_2023_1213884
crossref_primary_10_1007_s13580_024_00636_0
crossref_primary_10_3390_plants14142135
crossref_primary_10_1111_tpj_70023
crossref_primary_10_3390_ijms26062387
crossref_primary_10_1016_j_postharvbio_2025_113557
crossref_primary_10_1111_pbi_70241
Cites_doi 10.1101/cshperspect.a040014
10.1002/9781118764374.ch8
10.1016/j.cell.2021.04.046
10.1105/tpc.112.100107
10.1038/nbt.2120
10.1016/j.devcel.2020.10.012
10.1111/tpj.14671
10.1016/j.plaphy.2011.09.012
10.7554/eLife.13546
10.1016/j.cell.2016.08.029
10.1007/s00425-001-0675-3
10.1111/nph.14882
10.1126/science.aaw8848
10.1104/pp.17.00269
10.1105/tpc.112.108340
10.1073/pnas.1906244116
10.1016/j.molp.2020.11.022
10.1104/pp.113.234641
10.1104/pp.113.222901
10.1038/nature13593
10.1093/plphys/kiab157
10.1111/j.1469-8137.2010.03225.x
10.1146/annurev.arplant.50.1.571
10.1016/j.celrep.2019.12.012
10.1006/bbrc.1998.9267
10.1093/pcp/pcv096
10.1038/s41580-018-0016-z
10.1038/s41467-020-19977-2
10.1038/s41586-020-2032-3
10.1111/jipb.12780
10.1146/annurev.arplant.53.091401.143329
10.1111/tpj.13383
10.1016/j.cub.2020.01.089
10.1038/s41477-020-0707-2
10.1111/pbi.13443
10.1016/j.tplants.2020.01.009
10.1073/pnas.0702595104
10.1111/j.1365-313X.2009.03981.x
10.1186/1471-2164-15-431
10.1126/science.1172408
10.1016/j.devcel.2014.12.023
10.1093/pcp/pcq182
10.1104/pp.008532
10.1073/pnas.1919901117
10.1126/science.1173041
10.1046/j.1365-313X.2002.01384.x
10.1073/pnas.1402275111
10.1105/tpc.19.00604
10.1111/jipb.12901
10.1073/pnas.1613910113
10.1016/j.molp.2020.04.006
10.1093/pcp/pcw230
10.1104/pp.112.208702
10.1038/s41586-019-1449-z
10.1105/tpc.16.00808
10.1111/jipb.12899
10.1016/j.devcel.2019.08.008
10.1101/gr.134106.111
10.1111/tpj.12808
10.1093/nar/gkx1229
10.1111/tpj.13492
10.1007/s00425-013-1960-7
10.1073/pnas.1319955111
10.1016/j.devcel.2017.09.025
10.1111/tpj.14144
10.1073/pnas.0912021106
10.1146/annurev-arplant-043015-111854
10.1016/j.cell.2020.05.023
10.1146/annurev-arplant-043014-114648
10.1016/j.devcel.2019.02.010
10.1073/pnas.1900774116
10.1046/j.1365-313X.2003.01708.x
10.1016/j.cub.2020.09.016
10.1016/j.tplants.2016.04.004
10.1105/tpc.003483
10.1073/pnas.1316717111
10.1104/pp.19.00832
10.1111/jipb.13061
10.1111/pbi.13154
10.1126/scisignal.abf0322
10.1105/tpc.113.113159
10.1016/j.molcel.2017.06.031
10.1111/tpj.12205
10.1038/cr.2013.95
10.1111/pbi.12659
10.1111/pce.12130
10.1111/pbi.13124
10.1016/j.cell.2009.11.006
10.1016/j.plantsci.2021.110899
10.1016/j.febslet.2009.08.033
10.1007/s10529-011-0620-x
10.1111/tpj.14416
10.1111/j.1365-313X.2009.04025.x
10.1016/j.cell.2013.02.033
10.1111/j.1467-7652.2010.00547.x
10.1016/j.cub.2017.12.046
10.1104/pp.113.217810
10.1016/j.cell.2015.01.046
10.1093/jxb/erq151
10.1016/S0092-8674(01)00460-3
10.1101/gr.177659.114
10.1016/j.cub.2018.01.023
10.1073/pnas.1522301112
10.1126/science.aaf6005
10.1073/pnas.1420944112
10.1126/science.aac6014
10.1104/pp.20.00591
10.1111/pce.12968
10.1016/j.molcel.2017.02.016
10.1111/jipb.12689
10.1016/j.molp.2017.12.013
10.1105/tpc.106.041673
10.1126/science.aaf5656
10.1038/nbt.2948
10.1111/jipb.12714
10.1105/tpc.10.8.1391
10.1146/annurev.micro.62.081307.162918
10.1016/j.tplants.2007.05.001
10.1146/annurev-arplant-050718-095919
10.1023/A:1006321900483
10.1093/nar/gkv234
10.1038/ng1643
10.1126/science.aaz7614
10.1105/tpc.114.129171
10.1146/annurev.arplant.57.032905.105444
10.4161/psb.5.8.12225
10.1038/s41586-020-2644-7
10.1105/tpc.20.00453
10.1007/s00299-019-02383-4
10.1093/jxb/erv312
10.3389/fpls.2020.556972
10.1104/pp.17.01432
10.1038/s41580-020-00288-9
10.1104/pp.006478
10.1111/j.1469-8137.2008.02682.x
10.1073/pnas.0912030107
10.1016/j.molcel.2017.12.002
10.1073/pnas.172399299
10.1093/mp/ssq014
10.3389/fpls.2016.01079
10.1073/pnas.1816991115
10.1016/j.pbi.2009.07.012
10.1016/j.plantsci.2010.06.019
10.1038/s41467-020-15239-3
10.1105/tpc.113.119982
10.1038/s41586-019-1679-0
10.1111/j.1365-313X.2007.03052.x
10.1146/annurev-phyto-082712-102342
10.1093/jxb/erab008
10.1111/jipb.13063
10.1016/j.devcel.2017.09.024
10.1038/ng.3636
10.1007/s10142-002-0070-6
10.1038/sj.embor.7400791
10.1073/pnas.94.3.1035
10.1105/tpc.113.114595
10.1038/ng.3305
10.1038/ncomms9139
10.1111/jipb.12918
10.1016/j.devcel.2020.08.005
10.1104/pp.102.011999
10.1093/jxb/erz523
10.1016/j.tplants.2007.07.002
10.1007/s00425-015-2418-x
10.7554/eLife.41845
10.15252/embj.201899819
10.1016/j.plaphy.2020.05.005
10.1146/annurev-arplant-050718-100016
10.1146/annurev-cellbio-100617-062949
10.1016/j.bbagrm.2011.10.002
10.1016/j.ecoenv.2019.109485
10.1038/s41587-020-0581-5
10.1016/j.celrep.2013.11.019
10.1111/tpj.14756
10.1105/tpc.19.00335
10.1111/tpj.14345
10.1038/s41586-018-0009-2
10.1104/pp.103.026914
10.1111/jipb.12654
10.1111/jipb.13058
ContentType Journal Article
Copyright Springer Nature Limited 2021
2021. Springer Nature Limited.
Springer Nature Limited 2021.
Copyright_xml – notice: Springer Nature Limited 2021
– notice: 2021. Springer Nature Limited.
– notice: Springer Nature Limited 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
DOI 10.1038/s41576-021-00413-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1471-0064
EndPage 119
ExternalDocumentID 34561623
10_1038_s41576_021_00413_0
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFFNX
AFKRA
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
IHW
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
ID FETCH-LOGICAL-c375t-9ebfd97339e257464e215cab3d9d3f29b8cc27c7e6d844914ee5c1075ff26dae3
IEDL.DBID 7X7
ISICitedReferencesCount 1443
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698871700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0056
1471-0064
IngestDate Sun Nov 09 13:32:03 EST 2025
Mon Oct 06 18:27:09 EDT 2025
Wed Feb 19 02:26:44 EST 2025
Tue Nov 18 22:33:30 EST 2025
Sat Nov 29 02:34:59 EST 2025
Fri Feb 21 02:40:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2021. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c375t-9ebfd97339e257464e215cab3d9d3f29b8cc27c7e6d844914ee5c1075ff26dae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0695-3593
0000-0001-5134-731X
PMID 34561623
PQID 2621430606
PQPubID 44267
PageCount 16
ParticipantIDs proquest_miscellaneous_2576655552
proquest_journals_2621430606
pubmed_primary_34561623
crossref_citationtrail_10_1038_s41576_021_00413_0
crossref_primary_10_1038_s41576_021_00413_0
springer_journals_10_1038_s41576_021_00413_0
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Genetics
PublicationTitleAbbrev Nat Rev Genet
PublicationTitleAlternate Nat Rev Genet
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Dinneny (CR79) 2019; 35
Hu (CR139) 2017; 67
Lou, Wang, Yu (CR174) 2018; 18
Qin (CR159) 2021; 184
Chen (CR58) 2021; 63
Kreps (CR93) 2002; 130
Dobrenel (CR182) 2016; 67
Hirsch (CR157) 2014; 26
Mao (CR166) 2015; 6
Yamaguchi-Shinozaki, Shinozaki (CR86) 2006; 57
Tang (CR96) 2020; 62
Ling (CR111) 2017; 89
Nolan, Vukasinovic, Liu, Russinova, Yin (CR185) 2020; 32
Gupta (CR170) 2018; 41
Chakrabarti, de Lorenzo, Abdel-Ghany, Reddy, Hunt (CR118) 2020; 102
Watkinson (CR102) 2003; 133
Chen (CR196) 2020; 30
Liu, Wang, Sun (CR11) 2018; 9
Danquah (CR61) 2015; 82
Zhao (CR20) 2018; 115
Haake (CR90) 2002; 130
Lu (CR175) 2020; 38
Zhu, Li, Gao (CR178) 2020; 21
Baek (CR146) 2011; 52
Gu (CR116) 2018; 46
Stockinger, Gilmour, Thomashow (CR88) 1997; 94
Zhang (CR171) 2018; 176
Ding (CR49) 2015; 32
Min (CR41) 2019; 12
Claeys, Van Landeghem, Dubois, Maleux, Inze (CR101) 2014; 165
Chang (CR141) 2020; 62
Casal, Balasubramanian (CR29) 2019; 70
Zhan (CR106) 2015; 6
Sunkar, Chinnusamy, Zhu, Zhu (CR122) 2007; 12
Maity (CR12) 2019; 116
Khan (CR143) 2013; 13
Jung (CR27) 2016; 354
Vaillant, Schubert, Tourmente, Mathieu (CR151) 2006; 7
Zhang, Li, Lin, Chong (CR8) 2019; 70
Singh, Bhardwaj, Sharma, Purohit (CR189) 2020; 154
Fowler, Thomashow (CR92) 2002; 14
Li (CR197) 2017; 43
Katsuta (CR50) 2020; 103
McAinsh, Pittman (CR33) 2009; 181
Ding (CR134) 2019; 38
Lin (CR55) 2021; 12
Tellez-Robledo (CR119) 2019; 99
Munns (CR160) 2012; 30
Wang (CR25) 2020; 14
Tang, Wang, Li, Luan (CR36) 2020; 25
Soma, Takahashi, Suzuki, Shinozaki, Yamaguchi-Shinozaki (CR52) 2020; 11
Chinnusamy, Zhu, Zhu (CR95) 2007; 12
Chinnusamy, Dalal, Zhu (CR142) 2014
Kumar, Wigge (CR32) 2010; 140
Zhu (CR3) 2016; 167
Choi, Toyota, Kim, Hilleary, Gilroy (CR74) 2014; 111
Sun (CR43) 2016; 243
Gong (CR107) 2002; 99
Feng (CR19) 2018; 28
Zhang (CR162) 2018; 217
Li (CR163) 2015; 47
Zandalinas, Mittler (CR77) 2021; 186
Liu (CR158) 2020; 182
Li (CR184) 2020; 55
Zhao (CR60) 2017; 43
Wu (CR45) 2019; 61
Szostkiewicz (CR100) 2010; 61
Zhan, Lu, Zhu, Botella (CR177) 2020; 63
Zandalinas, Fichman, Mittler (CR75) 2020; 32
Cai (CR183) 2014; 111
Feng, Chen, Zuo (CR137) 2019; 61
Pesaresi, Kim (CR65) 2019; 38
Bailey-Serres, Parker, Ainsworth, Oldroyd, Schroeder (CR1) 2019; 575
Ma (CR46) 2009; 324
Wang (CR176) 2019; 17
Liu (CR23) 2020; 7
Merret (CR130) 2017; 174
Hugouvieux, Kwak, Schroeder (CR103) 2001; 106
Zheng (CR147) 2019; 97
Li (CR114) 2020; 21
Simmons (CR173) 2021; 307
Sunkar, Kapoor, Zhu (CR123) 2006; 18
Wang (CR164) 2020; 39
Narusaka (CR85) 2003; 34
Lugtenberg, Kamilova (CR195) 2009; 63
Ma (CR18) 2019; 48
Kim, Park, Gilmour, Thomashow (CR38) 2013; 75
Zemach (CR150) 2013; 153
Jiang (CR26) 2020; 13
Medina, Catalá, Salinas (CR98) 2011; 180
Hamilton (CR13) 2015; 350
Leftley, Banda, Pandey, Bennett, Voss (CR80) 2021
Kilian (CR135) 2007; 50
Chan, Phua, Crisp, McQuinn, Pogson (CR64) 2016; 67
Scharf, Berberich, Ebersberger, Nover (CR31) 2012; 1819
Meinhard, Rodriguez, Grill (CR70) 2002; 214
Wang (CR167) 2016; 48
Ding (CR198) 2018; 37
Isner, Begum, Nuehse, Hetherington, Maathuis (CR57) 2018; 28
Yu (CR132) 2020; 30
Vaidya (CR190) 2019; 366
Wu, Wang, Yeh, Lu, Wu (CR105) 2010; 186
Merret (CR127) 2015; 43
Suzuki (CR72) 2013; 25
Choi (CR73) 2017; 90
Legris (CR28) 2016; 354
Wang (CR115) 2015; 6
Vilchez (CR193) 2020; 6
Guan (CR108) 2013; 25
Wang (CR199) 2019; 51
Liu (CR87) 1998; 10
Park (CR47) 2009; 324
Miller (CR71) 2009; 2
Santiago (CR99) 2009; 60
Waltz (CR172) 2014; 32
Merret (CR128) 2013; 5
Yang, Guo (CR7) 2018; 60
Wang (CR110) 2020; 71
Brandt (CR68) 2015; 4
Zhang (CR131) 2017; 29
Cui (CR168) 2011; 49
Cao (CR191) 2017; 8
Jiang (CR153) 2014; 24
Jojoa-Cruz (CR10) 2018; 7
Cui (CR22) 2020; 183
Thomashow (CR97) 1999; 50
Zhang, Zhao, Zhu (CR2) 2020; 55
Xu (CR144) 2015; 66
Wang (CR133) 2016; 12
Morran (CR179) 2011; 9
Lin (CR51) 2020; 11
Yuan (CR9) 2014; 514
Sangwan, Orvar, Beyerly, Hirt, Dhindsa (CR21) 2002; 31
Ma, Bohnert (CR83) 2007; 8
Ma (CR24) 2015; 160
Jacob, Hirt, Bendahmane (CR82) 2017; 15
de Zelicourt, Colcombet, Hirt (CR62) 2016; 21
Qi (CR63) 2018; 60
Srivastava (CR186) 2020; 30
Yang (CR59) 2010; 5
Geiger (CR69) 2010; 107
Marquez, Brown, Simpson, Barta, Kalyna (CR112) 2012; 22
Geiger (CR39) 2009; 106
Nguyen (CR129) 2015; 56
Takahashi, Kuromori, Urano, Yamaguchi-Shinozaki, Shinozaki (CR6) 2020; 11
Wang (CR44) 2020; 117
Nakashima (CR180) 2014; 239
Nakashima (CR91) 2000; 42
Ding (CR113) 2014; 15
Hua (CR66) 2012; 24
Zhou (CR125) 2013; 161
Wibowo (CR155) 2016; 5
Chen (CR48) 2020; 62
Hrabak (CR35) 2003; 132
Lu (CR109) 2020; 182
Liu (CR200) 2017; 66
Wang (CR181) 2018; 69
Wu (CR67) 2020; 578
Seki (CR94) 2002; 2
Takahashi (CR53) 2020; 11
Shinwari (CR89) 1998; 250
Zhu (CR148) 2020; 32
Jiang (CR15) 2019; 572
Yang (CR126) 2013; 36
Laohavisit (CR17) 2013; 163
Willems (CR136) 2019; 99
Yong-Villalobos (CR145) 2015; 112
Wang (CR165) 2021; 19
Takahashi (CR78) 2018; 556
Liu (CR124) 2019; 17
Lang-Mladek (CR154) 2010; 3
Sanchez, Paszkowski (CR156) 2014; 10
Okamoto (CR104) 2016; 7
Zhu (CR84) 2002; 53
Hua (CR81) 2009; 12
Reinhold-Hurek, Bunger, Burbano, Sabale, Hurek (CR192) 2015; 53
Wang (CR187) 2018; 11
Chong, Foo, Lin, Wong, Verslues (CR117) 2019; 116
Ren (CR161) 2005; 37
Liu, Zhang (CR194) 2015; 6
Matamoros, Becana (CR138) 2021; 72
Rennie (CR16) 2014; 26
Fichman, Myers, Grant, Mittler (CR76) 2021; 14
Zhang (CR149) 2016; 113
Iwasaki, Paszkowski (CR152) 2014; 111
Zhang, Lang, Zhu (CR140) 2018; 19
Cao (CR188) 2013; 23
Chen (CR4) 2021; 63
Mallikarjuna, Mallikarjuna, Reddy, Kaul (CR169) 2011; 33
Marti, Stancombe, Webb (CR34) 2013; 163
Ye, Zhou, Wu, Ji, Li (CR120) 2019; 183
Gobert, Isayenkov, Voelker, Czempinski, Maathuis (CR56) 2007; 104
Sirichandra (CR42) 2009; 583
Gupta, Rico-Medina, Cano-Delgado (CR5) 2020; 368
Tang (CR37) 2015; 112
Fabregas, Yoshida, Fernie (CR54) 2020; 11
Jung (CR30) 2020; 585
Rogers, Chen (CR121) 2013; 25
Hamilton, Haswell (CR14) 2017; 58
Klingler, Batelli, Zhu (CR40) 2010; 61
Y Kim (413_CR38) 2013; 75
ES Hamilton (413_CR14) 2017; 58
D Geiger (413_CR39) 2009; 106
M Cui (413_CR168) 2011; 49
JJ Casal (413_CR29) 2019; 70
P Jacob (413_CR82) 2017; 15
I Vaillant (413_CR151) 2006; 7
M Iwasaki (413_CR152) 2014; 111
R Munns (413_CR160) 2012; 30
D Geiger (413_CR69) 2010; 107
K Yamaguchi-Shinozaki (413_CR86) 2006; 57
L Yong-Villalobos (413_CR145) 2015; 112
JK Zhu (413_CR84) 2002; 53
L Zhang (413_CR131) 2017; 29
CT Ye (413_CR120) 2019; 183
Y Li (413_CR114) 2020; 21
Y Ma (413_CR24) 2015; 160
C Sirichandra (413_CR42) 2009; 583
I Szostkiewicz (413_CR100) 2010; 61
Z Lin (413_CR55) 2021; 12
JK Zhu (413_CR3) 2016; 167
M Legris (413_CR28) 2016; 354
FH Wu (413_CR67) 2020; 578
Y Takahashi (413_CR53) 2020; 11
J Wang (413_CR25) 2020; 14
C Lang-Mladek (413_CR154) 2010; 3
J Bailey-Serres (413_CR1) 2019; 575
BK Gupta (413_CR170) 2018; 41
MJ Cao (413_CR191) 2017; 8
JI Vilchez (413_CR193) 2020; 6
SI Zandalinas (413_CR77) 2021; 186
J Zhang (413_CR171) 2018; 176
XM Liu (413_CR194) 2015; 6
P Pesaresi (413_CR65) 2019; 38
SI Zandalinas (413_CR75) 2020; 32
M Srivastava (413_CR186) 2020; 30
JP Klingler (413_CR40) 2010; 61
KX Chan (413_CR64) 2016; 67
EJ Stockinger (413_CR88) 1997; 94
B Tellez-Robledo (413_CR119) 2019; 99
Z Wang (413_CR165) 2021; 19
C Jiang (413_CR153) 2014; 24
C Zhao (413_CR60) 2017; 43
Y Ding (413_CR134) 2019; 38
EM Hrabak (413_CR35) 2003; 132
B Lugtenberg (413_CR195) 2009; 63
QQ Wu (413_CR45) 2019; 61
P Qin (413_CR159) 2021; 184
M Meinhard (413_CR70) 2002; 214
WG Choi (413_CR73) 2017; 90
X Wang (413_CR167) 2016; 48
S Katsuta (413_CR50) 2020; 103
Z Gong (413_CR107) 2002; 99
JC Isner (413_CR57) 2018; 28
MG Wang (413_CR176) 2019; 17
Q Liu (413_CR87) 1998; 10
JA Kreps (413_CR93) 2002; 130
SJ Wu (413_CR105) 2010; 186
JI Watkinson (413_CR102) 2003; 133
ZY Cai (413_CR183) 2014; 111
R Merret (413_CR127) 2015; 43
CR Simmons (413_CR173) 2021; 307
J Medina (413_CR98) 2011; 180
H Claeys (413_CR101) 2014; 165
B Zhang (413_CR149) 2016; 113
Y Ling (413_CR111) 2017; 89
GL Chong (413_CR117) 2019; 116
A Laohavisit (413_CR17) 2013; 163
XM Li (413_CR163) 2015; 47
K Nakashima (413_CR180) 2014; 239
TM Nolan (413_CR185) 2020; 32
Y Ding (413_CR198) 2018; 37
Q Liu (413_CR23) 2020; 7
J Kilian (413_CR135) 2007; 50
J Santiago (413_CR99) 2009; 60
P Willems (413_CR136) 2019; 99
T Dobrenel (413_CR182) 2016; 67
M Seki (413_CR94) 2002; 2
B Brandt (413_CR68) 2015; 4
T Yang (413_CR59) 2010; 5
J Hua (413_CR81) 2009; 12
JR Dinneny (413_CR79) 2019; 35
Z Lin (413_CR51) 2020; 11
C Zhao (413_CR20) 2018; 115
N Suzuki (413_CR72) 2013; 25
H Yu (413_CR132) 2020; 30
CN Hirsch (413_CR157) 2014; 26
S Jojoa-Cruz (413_CR10) 2018; 7
Y Cui (413_CR22) 2020; 183
N Fabregas (413_CR54) 2020; 11
X Wang (413_CR199) 2019; 51
S Morran (413_CR179) 2011; 9
R Sunkar (413_CR122) 2007; 12
DH Sanchez (413_CR156) 2014; 10
V Hugouvieux (413_CR103) 2001; 106
F Takahashi (413_CR6) 2020; 11
JF Li (413_CR184) 2020; 55
RJ Tang (413_CR36) 2020; 25
P Wang (413_CR44) 2020; 117
M Chakrabarti (413_CR118) 2020; 102
MF Thomashow (413_CR97) 1999; 50
RJ Tang (413_CR37) 2015; 112
JY Zhang (413_CR8) 2019; 70
F Takahashi (413_CR78) 2018; 556
H Zhang (413_CR140) 2018; 19
K Tang (413_CR96) 2020; 62
Y Marquez (413_CR112) 2012; 22
Z Liu (413_CR200) 2017; 66
YN Chang (413_CR141) 2020; 62
J Hu (413_CR139) 2017; 67
K Chen (413_CR196) 2020; 30
MC Marti (413_CR34) 2013; 163
L Ma (413_CR18) 2019; 48
WG Choi (413_CR74) 2014; 111
M Zhou (413_CR125) 2013; 161
K Nakashima (413_CR91) 2000; 42
R Merret (413_CR128) 2013; 5
M Okamoto (413_CR104) 2016; 7
S Fowler (413_CR92) 2002; 14
V Chinnusamy (413_CR95) 2007; 12
E Waltz (413_CR172) 2014; 32
Z Wang (413_CR164) 2020; 39
PC Wang (413_CR181) 2018; 69
Y Ding (413_CR49) 2015; 32
D Lou (413_CR174) 2018; 18
CA Lu (413_CR109) 2020; 182
KD Scharf (413_CR31) 2012; 1819
SY Park (413_CR47) 2009; 324
AR Khan (413_CR143) 2013; 13
ZJ Wang (413_CR115) 2015; 6
B Wang (413_CR110) 2020; 71
V Chinnusamy (413_CR142) 2014
HD Mao (413_CR166) 2015; 6
J Feng (413_CR137) 2019; 61
A Zemach (413_CR150) 2013; 153
B Reinhold-Hurek (413_CR192) 2015; 53
Y Liu (413_CR124) 2019; 17
F Yuan (413_CR9) 2014; 514
EA Rennie (413_CR16) 2014; 26
R Sunkar (413_CR123) 2006; 18
M Zhang (413_CR162) 2018; 217
J Gu (413_CR116) 2018; 46
HJ Wang (413_CR187) 2018; 11
G Miller (413_CR71) 2009; 2
G Mallikarjuna (413_CR169) 2011; 33
DP Hua (413_CR66) 2012; 24
Y Zhu (413_CR148) 2020; 32
Z Jiang (413_CR15) 2019; 572
ZK Shinwari (413_CR89) 1998; 250
CH Yang (413_CR126) 2013; 36
D Baek (413_CR146) 2011; 52
JH Jung (413_CR30) 2020; 585
R Merret (413_CR130) 2017; 174
K Chen (413_CR48) 2020; 62
SJ Sun (413_CR43) 2016; 243
A Wibowo (413_CR155) 2016; 5
X Liu (413_CR11) 2018; 9
X Zhan (413_CR177) 2020; 63
Y Yang (413_CR7) 2018; 60
M Zheng (413_CR147) 2019; 97
H Zhang (413_CR2) 2020; 55
F Ding (413_CR113) 2014; 15
K Maity (413_CR12) 2019; 116
SV Kumar (413_CR32) 2010; 140
A de Zelicourt (413_CR62) 2016; 21
K Rogers (413_CR121) 2013; 25
S Wang (413_CR133) 2016; 12
MJ Cao (413_CR188) 2013; 23
R Singh (413_CR189) 2020; 154
Y Narusaka (413_CR85) 2003; 34
R Xu (413_CR144) 2015; 66
XX Chen (413_CR4) 2021; 63
XX Chen (413_CR58) 2021; 63
H Li (413_CR197) 2017; 43
A Gupta (413_CR5) 2020; 368
ZH Ren (413_CR161) 2005; 37
H Zhu (413_CR178) 2020; 21
B Jiang (413_CR26) 2020; 13
MA Matamoros (413_CR138) 2021; 72
Y Ma (413_CR46) 2009; 324
ES Hamilton (413_CR13) 2015; 350
A Danquah (413_CR61) 2015; 82
X Zhan (413_CR106) 2015; 6
Y Fichman (413_CR76) 2021; 14
AH Nguyen (413_CR129) 2015; 56
W Feng (413_CR19) 2018; 28
F Soma (413_CR52) 2020; 11
S Ma (413_CR83) 2007; 8
Y Lu (413_CR175) 2020; 38
AS Vaidya (413_CR190) 2019; 366
V Haake (413_CR90) 2002; 130
V Sangwan (413_CR21) 2002; 31
JH Jung (413_CR27) 2016; 354
MK Min (413_CR41) 2019; 12
MR McAinsh (413_CR33) 2009; 181
Q Guan (413_CR108) 2013; 25
J Qi (413_CR63) 2018; 60
A Gobert (413_CR56) 2007; 104
N Leftley (413_CR80) 2021
YC Liu (413_CR158) 2020; 182
References_xml – volume: 99
  start-page: 752
  year: 2019
  end-page: 762
  ident: CR136
  article-title: The Plant PTM Viewer, a central resource for exploring plant protein modifications
  publication-title: Plant J.
– volume: 94
  start-page: 1035
  year: 1997
  end-page: 1040
  ident: CR88
  article-title: CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a -acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 43
  start-page: 4121
  year: 2015
  end-page: 4132
  ident: CR127
  article-title: Heat-induced ribosome pausing triggers mRNA co-translational decay in
  publication-title: Nucleic Acids Res.
– volume: 161
  start-page: 1375
  year: 2013
  end-page: 1391
  ident: CR125
  article-title: Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass
  publication-title: Plant Physiol.
– volume: 102
  start-page: 916
  year: 2020
  end-page: 930
  ident: CR118
  article-title: Wide-ranging transcriptome remodelling mediated by alternative polyadenylation in response to abiotic stresses in Sorghum
  publication-title: Plant J.
– volume: 23
  start-page: 1043
  year: 2013
  end-page: 1054
  ident: CR188
  article-title: An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants
  publication-title: Cell Res.
– volume: 11
  start-page: 315
  year: 2018
  end-page: 325
  ident: CR187
  article-title: Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2
  publication-title: Mol. Plant
– volume: 575
  start-page: 109
  year: 2019
  end-page: 118
  ident: CR1
  article-title: Genetic strategies for improving crop yields
  publication-title: Nature
– volume: 556
  start-page: 235
  year: 2018
  end-page: 238
  ident: CR78
  article-title: A small peptide modulates stomatal control via abscisic acid in long-distance signalling
  publication-title: Nature
– volume: 17
  start-page: 1697
  year: 2019
  end-page: 1699
  ident: CR176
  article-title: Optimizing base editors for improved efficiency and expanded editing scope in rice
  publication-title: Plant Biotechnol. J.
– volume: 186
  start-page: 833
  year: 2010
  end-page: 842
  ident: CR105
  article-title: Isolation and characterization of the heat-intolerant 2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance
  publication-title: N. Phytol.
– volume: 49
  start-page: 1384
  year: 2011
  end-page: 1391
  ident: CR168
  article-title: Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice
  publication-title: Plant Physiol. Biochem.
– volume: 163
  start-page: 253
  year: 2013
  end-page: 262
  ident: CR17
  article-title: Salinity-induced calcium signaling and root adaptation in arabidopsis require the calcium regulatory protein annexin1
  publication-title: Plant Physiol.
– volume: 250
  start-page: 161
  year: 1998
  end-page: 170
  ident: CR89
  article-title: An gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 56
  start-page: 1762
  year: 2015
  end-page: 1772
  ident: CR129
  article-title: Loss of 5′–3′ exoribonuclease AtXRN4 function enhances heat stress tolerance of plants subjected to severe heat stress
  publication-title: Plant Cell Physiol.
– volume: 106
  start-page: 477
  year: 2001
  end-page: 487
  ident: CR103
  article-title: An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in
  publication-title: Cell
– volume: 19
  start-page: 20
  year: 2021
  end-page: 22
  ident: CR165
  article-title: Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication
  publication-title: Plant Biotechnol. J.
– volume: 37
  start-page: 1141
  year: 2005
  end-page: 1146
  ident: CR161
  article-title: A rice quantitative trait locus for salt tolerance encodes a sodium transporter
  publication-title: Nat. Genet.
– volume: 90
  start-page: 698
  year: 2017
  end-page: 707
  ident: CR73
  article-title: Orchestrating rapid long-distance signaling in plants with Ca , ROS and electrical signals
  publication-title: Plant J.
– volume: 15
  start-page: 405
  year: 2017
  end-page: 414
  ident: CR82
  article-title: The heat-shock protein/chaperone network and multiple stress resistance
  publication-title: Plant Biotechnol. J.
– volume: 7
  start-page: 1273
  year: 2006
  end-page: 1278
  ident: CR151
  article-title: MOM1 mediates DNA-methylation-independent silencing of repetitive sequences in
  publication-title: EMBO Rep.
– volume: 11
  year: 2020
  ident: CR53
  article-title: MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response
  publication-title: Nat. Commun.
– volume: 50
  start-page: 347
  year: 2007
  end-page: 363
  ident: CR135
  article-title: The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses
  publication-title: Plant J.
– volume: 67
  start-page: 25
  year: 2016
  end-page: 53
  ident: CR64
  article-title: Learning the languages of the chloroplast: retrograde signaling and beyond
  publication-title: Annu. Rev. Plant Biol.
– volume: 4
  year: 2015
  ident: CR68
  article-title: Calcium specificity signaling mechanisms in abscisic acid signal transduction in guard cells
  publication-title: eLife
– volume: 99
  start-page: 1203
  year: 2019
  end-page: 1219
  ident: CR119
  article-title: The polyadenylation factor FIP1 is important for plant development and root responses to abiotic stresses
  publication-title: Plant J.
– volume: 112
  start-page: 3134
  year: 2015
  end-page: 3139
  ident: CR37
  article-title: Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 25
  start-page: 3553
  year: 2013
  end-page: 3569
  ident: CR72
  article-title: Temporal–spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants
  publication-title: Plant Cell
– volume: 111
  start-page: 9651
  year: 2014
  end-page: 9656
  ident: CR183
  article-title: GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 61
  start-page: 1206
  year: 2019
  end-page: 1223
  ident: CR137
  article-title: Protein S-nitrosylation in plants: current progresses and challenges
  publication-title: J. Integr. Plant Biol.
– volume: 17
  start-page: 2370
  year: 2019
  end-page: 2383
  ident: CR124
  article-title: MiR319 mediated salt tolerance by ethylene
  publication-title: Plant Biotechnol. J.
– volume: 572
  start-page: 341
  year: 2019
  end-page: 346
  ident: CR15
  article-title: Plant cell-surface GIPC sphingolipids sense salt to trigger Ca influx
  publication-title: Nature
– volume: 53
  start-page: 247
  year: 2002
  end-page: 273
  ident: CR84
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 22
  start-page: 1184
  year: 2012
  end-page: 1195
  ident: CR112
  article-title: Transcriptome survey reveals increased complexity of the alternative splicing landscape in
  publication-title: Genome Res.
– volume: 180
  start-page: 3
  year: 2011
  end-page: 11
  ident: CR98
  article-title: The CBFs: three transcription factors to cold acclimate
  publication-title: Plant Sci.
– volume: 58
  start-page: 1222
  year: 2017
  end-page: 1237
  ident: CR14
  article-title: The tension-sensitive ion transport activity of MSL8 is critical for its function in pollen hydration and germination
  publication-title: Plant Cell Physiol.
– volume: 186
  start-page: 1721
  year: 2021
  end-page: 1733
  ident: CR77
  article-title: Vascular and non-vascular transmission of systemic reactive oxygen signals during wounding and heat stress
  publication-title: Plant Physiol.
– volume: 42
  start-page: 657
  year: 2000
  end-page: 665
  ident: CR91
  article-title: Organization and expression of two DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression
  publication-title: Plant Mol. Biol.
– volume: 67
  start-page: 702
  year: 2017
  end-page: 710.e4
  ident: CR139
  article-title: Nitric oxide regulates protein methylation during stress responses in plants
  publication-title: Mol. Cell
– volume: 6
  year: 2015
  ident: CR166
  article-title: A transposable element in a NAC gene is associated with drought tolerance in maize seedlings
  publication-title: Nat. Commun.
– volume: 174
  start-page: 1216
  year: 2017
  end-page: 1225
  ident: CR130
  article-title: Heat shock protein HSP101 affects the release of ribosomal protein mRNAs for recovery after heat shock
  publication-title: Plant Physiol.
– volume: 14
  start-page: 315
  year: 2020
  end-page: 329
  ident: CR25
  article-title: Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice
  publication-title: Mol. Plant
– volume: 30
  start-page: 1410
  year: 2020
  end-page: 1423
  ident: CR186
  article-title: SUMO conjugation to BZR1 enables brassinosteroid signaling to integrate environmental cues to shape plant growth
  publication-title: Curr. Biol.
– volume: 11
  year: 2020
  ident: CR52
  article-title: Plant Raf-like kinases regulate the mRNA population upstream of ABA-unresponsive SnRK2 kinases under drought stress
  publication-title: Nat. Commun.
– volume: 34
  start-page: 137
  year: 2003
  end-page: 148
  ident: CR85
  article-title: Interaction between two -acting elements, ABRE and DRE, in ABA-dependent expression of rd29A gene in response to dehydration and high-salinity stresses
  publication-title: Plant J.
– volume: 66
  start-page: 117
  year: 2017
  end-page: 128.e5
  ident: CR200
  article-title: Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response
  publication-title: Mol. Cell
– volume: 104
  start-page: 10726
  year: 2007
  end-page: 10731
  ident: CR56
  article-title: The two-pore channel TPK1 gene encodes the vacuolar K conductance and plays a role in K homeostasis
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 113
  start-page: 12580
  year: 2016
  end-page: 12585
  ident: CR149
  article-title: Chilling-induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 132
  start-page: 666
  year: 2003
  end-page: 680
  ident: CR35
  article-title: The CDPK–SnRK superfamily of protein kinases
  publication-title: Plant Physiol.
– volume: 354
  start-page: 886
  year: 2016
  end-page: 889
  ident: CR27
  article-title: Phytochromes function as thermosensors in
  publication-title: Science
– volume: 82
  start-page: 232
  year: 2015
  end-page: 244
  ident: CR61
  article-title: Identification and characterization of an ABA-activated MAP kinase cascade in
  publication-title: Plant J.
– volume: 239
  start-page: 47
  year: 2014
  end-page: 60
  ident: CR180
  article-title: Comparative functional analysis of six drought-responsive promoters in transgenic rice
  publication-title: Planta
– volume: 10
  year: 2014
  ident: CR156
  article-title: Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene
  publication-title: PLoS Genet.
– volume: 115
  start-page: 13123
  year: 2018
  end-page: 13128
  ident: CR20
  article-title: Leucine-rich repeat extensin proteins regulate plant salt tolerance in
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 2
  start-page: 282
  year: 2002
  end-page: 291
  ident: CR94
  article-title: Monitoring the expression pattern of around 7,000 genes under ABA treatments using a full-length cDNA microarray
  publication-title: Funct. Integr.Genomics
– volume: 46
  start-page: 1777
  year: 2018
  end-page: 1792
  ident: CR116
  article-title: Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in
  publication-title: Nucleic Acids Res.
– volume: 69
  start-page: 100
  year: 2018
  end-page: 112
  ident: CR181
  article-title: Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response
  publication-title: Mol. Cell
– volume: 354
  start-page: 897
  year: 2016
  end-page: 900
  ident: CR28
  article-title: Phytochrome B integrates light and temperature signals in
  publication-title: Science
– volume: 35
  start-page: 239
  year: 2019
  end-page: 257
  ident: CR79
  article-title: Developmental responses to water and salinity in root systems
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 6
  year: 2015
  ident: CR106
  article-title: An PWI and RRM motif-containing protein is critical for pre-mRNA splicing and ABA responses
  publication-title: Nat. Commun.
– volume: 12
  start-page: 444
  year: 2007
  end-page: 451
  ident: CR95
  article-title: Cold stress regulation of gene expression in plants
  publication-title: Trends Plant Sci.
– volume: 14
  start-page: 1675
  year: 2002
  end-page: 1690
  ident: CR92
  article-title: transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway
  publication-title: Plant Cell
– volume: 57
  start-page: 781
  year: 2006
  end-page: 803
  ident: CR86
  article-title: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses
  publication-title: Annu. Rev. Plant Biol.
– volume: 7
  year: 2018
  ident: CR10
  article-title: Cryo-EM structure of the mechanically activated ion channel OSCA1.2
  publication-title: eLife
– volume: 111
  start-page: 6497
  year: 2014
  end-page: 6502
  ident: CR74
  article-title: Salt stress-induced Ca waves are associated with rapid, long-distance root-to-shoot signaling in plants
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 21
  start-page: 661
  year: 2020
  end-page: 677
  ident: CR178
  article-title: Applications of CRISPR–Cas in agriculture and plant biotechnology
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 13
  year: 2013
  ident: CR143
  article-title: Vernalization treatment induces site-specific DNA hypermethylation at the VERNALIZATION-A1 (VRN-A1) locus in hexaploid winter wheat
  publication-title: BMC Plant Biol.
– volume: 8
  year: 2017
  ident: CR191
  article-title: Combining chemical and genetic approaches to increase drought resistance in plants
  publication-title: Nat. Commun.
– volume: 368
  start-page: 266
  year: 2020
  end-page: 269
  ident: CR5
  article-title: The physiology of plant responses to drought
  publication-title: Science
– volume: 111
  start-page: 8547
  year: 2014
  end-page: 8552
  ident: CR152
  article-title: Identification of genes preventing transgenerational transmission of stress-induced epigenetic states
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 41
  start-page: 1186
  year: 2018
  end-page: 1200
  ident: CR170
  article-title: Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice
  publication-title: Plant Cell Env.
– volume: 48
  start-page: 1233
  year: 2016
  end-page: 1241
  ident: CR167
  article-title: Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings
  publication-title: Nat. Genet.
– volume: 30
  start-page: 229
  year: 2020
  end-page: 242.e5
  ident: CR132
  article-title: STCH4/REIL2 confers cold stress tolerance in by promoting rRNA processing and CBF protein translation
  publication-title: Cell Rep.
– volume: 12
  year: 2016
  ident: CR133
  article-title: Chloroplast RNA-binding protein RBD1 promotes chilling tolerance through 23S rRNA processing in
  publication-title: PLoS Genet.
– volume: 51
  start-page: 222
  year: 2019
  end-page: 235.e5
  ident: CR199
  article-title: PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15
  publication-title: Dev. Cell
– year: 2021
  ident: CR80
  article-title: Uncovering how auxin optimizes root systems architecture in response to environmental stresses
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a040014
– volume: 18
  start-page: 2051
  year: 2006
  end-page: 2065
  ident: CR123
  article-title: Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in is mediated by downregulation of miR398 and important for oxidative stress tolerance
  publication-title: Plant Cell
– volume: 15
  year: 2014
  ident: CR113
  article-title: Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in
  publication-title: BMC Genomics
– volume: 7
  start-page: 1079
  year: 2016
  ident: CR104
  article-title: Sm-like protein-mediated RNA metabolism is required for heat stress tolerance in arabidopsis
  publication-title: Front. Plant Sci.
– volume: 71
  start-page: 1598
  year: 2020
  end-page: 1613
  ident: CR110
  article-title: The DEAD-box RNA helicase SHI2 functions in repression of salt-inducible genes and regulation of cold-inducible gene splicing
  publication-title: J. Exp. Bot.
– volume: 61
  start-page: 3199
  year: 2010
  end-page: 3210
  ident: CR40
  article-title: ABA receptors: the START of a new paradigm in phytohormone signalling
  publication-title: J. Exp. Bot.
– volume: 99
  start-page: 11507
  year: 2002
  end-page: 11512
  ident: CR107
  article-title: RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 11
  year: 2020
  ident: CR54
  article-title: Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants
  publication-title: Nat. Commun.
– volume: 181
  start-page: 275
  year: 2009
  end-page: 294
  ident: CR33
  article-title: Shaping the calcium signature
  publication-title: N. Phytol.
– volume: 106
  start-page: 21425
  year: 2009
  end-page: 21430
  ident: CR39
  article-title: Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase–phosphatase pair
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 38
  year: 2019
  ident: CR134
  article-title: EGR2 phosphatase regulates OST1 kinase activity and freezing tolerance in
  publication-title: EMBO J.
– volume: 63
  start-page: 494
  year: 2021
  end-page: 509
  ident: CR58
  article-title: Arabidopsis U-box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor-like protein kinases LRR1 and KIN7
  publication-title: J. Integr. Plant Biol.
– volume: 307
  start-page: 110899
  year: 2021
  ident: CR173
  article-title: Successes and insights of an industry biotech program to enhance maize agronomic traits
  publication-title: Plant Sci.
– volume: 107
  start-page: 8023
  year: 2010
  end-page: 8028
  ident: CR69
  article-title: Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca affinities
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 8
  year: 2007
  ident: CR83
  article-title: Integration of stress-related transcript profiles, promoter structures, and cell-specific expression
  publication-title: Genome Biol.
– volume: 514
  start-page: 367
  year: 2014
  end-page: 371
  ident: CR9
  article-title: OSCA1 mediates osmotic-stress-evoked Ca increases vital for osmosensing in
  publication-title: Nature
– volume: 585
  start-page: 256
  year: 2020
  end-page: 260
  ident: CR30
  article-title: A prion-like domain in ELF3 functions as a thermosensor in
  publication-title: Nature
– volume: 61
  start-page: 478
  year: 2019
  end-page: 491
  ident: CR45
  article-title: ZmOST1 mediates abscisic acid regulation of guard cell ion channels and drought stress responses
  publication-title: J. Integr. Plant Biol.
– volume: 12
  year: 2021
  ident: CR55
  article-title: Initiation and amplification of SnRK2 activation in abscisic acid signaling
  publication-title: Nat. Commun.
– volume: 350
  start-page: 438
  year: 2015
  end-page: 441
  ident: CR13
  article-title: Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination
  publication-title: Science
– volume: 217
  start-page: 1161
  year: 2018
  end-page: 1176
  ident: CR162
  article-title: A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na exclusion and salt tolerance in maize
  publication-title: N. Phytol.
– volume: 62
  start-page: 258
  year: 2020
  end-page: 263
  ident: CR96
  article-title: The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes
  publication-title: J. Integr. Plant Biol.
– volume: 33
  start-page: 1689
  year: 2011
  end-page: 1697
  ident: CR169
  article-title: Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice ( L.)
  publication-title: Biotechnol. Lett.
– volume: 12
  start-page: 568
  year: 2009
  end-page: 573
  ident: CR81
  article-title: From freezing to scorching, transcriptional responses to temperature variations in plants
  publication-title: Curr. Opin. Plant Biol.
– volume: 72
  start-page: 5876
  year: 2021
  end-page: 5892
  ident: CR138
  article-title: Molecular responses of legumes to abiotic stress: protein post-translational modifications and redox signaling
  publication-title: J. Exp. Bot.
– volume: 160
  start-page: 1209
  year: 2015
  end-page: 1221
  ident: CR24
  article-title: COLD1 confers chilling tolerance in rice
  publication-title: Cell
– volume: 9
  start-page: 230
  year: 2011
  end-page: 249
  ident: CR179
  article-title: Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors
  publication-title: Plant Biotechnol. J.
– volume: 24
  start-page: 1821
  year: 2014
  end-page: 1829
  ident: CR153
  article-title: Environmentally responsive genome-wide accumulation of de novo mutations and epimutations
  publication-title: Genome Res.
– volume: 43
  start-page: 630
  year: 2017
  end-page: 642
  ident: CR197
  article-title: MPK3-and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in
  publication-title: Dev. Cell
– volume: 63
  start-page: 53
  year: 2021
  end-page: 78
  ident: CR4
  article-title: Protein kinases in plant responses to drought, salt, and cold stress
  publication-title: J. Integr. Plant Biol.
– volume: 14
  start-page: eabf0322
  year: 2021
  ident: CR76
  article-title: Plasmodesmata-localized proteins and ROS orchestrate light-induced rapid systemic signaling in
  publication-title: Sci. Signal.
– volume: 116
  start-page: 22376
  year: 2019
  end-page: 22385
  ident: CR117
  article-title: Highly ABA-induced 1 (HAI1)-interacting protein HIN1 and drought acclimation-enhanced splicing efficiency at intron retention sites
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 163
  start-page: 625
  year: 2013
  end-page: 634
  ident: CR34
  article-title: Cell- and stimulus type-specific intracellular free Ca signals in arabidopsis
  publication-title: Plant Physiol.
– volume: 5
  start-page: 1279
  year: 2013
  end-page: 1293
  ident: CR128
  article-title: XRN4 and LARP1 are required for a heat-triggered mRNA decay pathway involved in plant acclimation and survival during thermal stress
  publication-title: Cell Rep.
– volume: 11
  year: 2020
  ident: CR51
  article-title: A RAF–SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants
  publication-title: Nat. Commun.
– volume: 38
  start-page: 819
  year: 2019
  end-page: 823
  ident: CR65
  article-title: Current understanding of GUN1: a key mediator involved in biogenic retrograde signaling
  publication-title: Plant Cell Rep.
– volume: 183
  start-page: 109485
  year: 2019
  ident: CR120
  article-title: Genome-wide alternative polyadenylation dynamics in response to biotic and abiotic stresses in rice
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 3
  start-page: 594
  year: 2010
  end-page: 602
  ident: CR154
  article-title: Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in
  publication-title: Mol. Plant
– volume: 25
  start-page: 342
  year: 2013
  end-page: 356
  ident: CR108
  article-title: A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in
  publication-title: Plant Cell
– volume: 28
  start-page: 666
  year: 2018
  end-page: 675.e5
  ident: CR19
  article-title: The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca signaling
  publication-title: Curr. Biol.
– volume: 61
  start-page: 25
  year: 2010
  end-page: 35
  ident: CR100
  article-title: Closely related receptor complexes differ in their ABA selectivity and sensitivity
  publication-title: Plant J.
– year: 2014
  ident: CR142
  article-title: Epigenetic regulation of abiotic stress responses in plants
  publication-title: Plant Abiotic Stress
  doi: 10.1002/9781118764374.ch8
– volume: 30
  start-page: 4815
  year: 2020
  end-page: 4825.e4
  ident: CR196
  article-title: BONZAI proteins control global osmotic stress responses in plants
  publication-title: Curr. Biol.
– volume: 30
  start-page: 360-U173
  year: 2012
  ident: CR160
  article-title: Wheat grain yield on saline soils is improved by an ancestral Na transporter gene
  publication-title: Nat. Biotechnol.
– volume: 18
  year: 2018
  ident: CR174
  article-title: The sucrose non-fermenting-1-related protein kinases SAPK1 and SAPK2 function collaboratively as positive regulators of salt stress tolerance in rice
  publication-title: BMC Plant Biol.
– volume: 167
  start-page: 313
  year: 2016
  end-page: 324
  ident: CR3
  article-title: Abiotic stress signaling and responses in plants
  publication-title: Cell
– volume: 28
  start-page: 466
  year: 2018
  end-page: 472 e4
  ident: CR57
  article-title: KIN7 kinase regulates the vacuolar TPK1 K channel during stomatal closure
  publication-title: Curr. Biol.
– volume: 103
  start-page: 634
  year: 2020
  end-page: 644
  ident: CR50
  article-title: Raf-like kinases act as positive regulators of subclass III SnRK2 in osmostress signaling
  publication-title: Plant J.
– volume: 60
  start-page: 575
  year: 2009
  end-page: 588
  ident: CR99
  article-title: Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs
  publication-title: Plant J.
– volume: 31
  start-page: 629
  year: 2002
  end-page: 638
  ident: CR21
  article-title: Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways
  publication-title: Plant J.
– volume: 37
  year: 2018
  ident: CR198
  article-title: OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses
  publication-title: EMBO J.
– volume: 116
  start-page: 14309
  year: 2019
  end-page: 14318
  ident: CR12
  article-title: Cryo-EM structure of OSCA1.2 from elucidates the mechanical basis of potential membrane hyperosmolality gating
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 62
  start-page: 25
  year: 2020
  end-page: 54
  ident: CR48
  article-title: Abscisic acid dynamics, signaling, and functions in plants
  publication-title: J. Integr. Plant Biol.
– volume: 1819
  start-page: 104
  year: 2012
  end-page: 119
  ident: CR31
  article-title: The plant heat stress transcription factor (Hsf) family: structure, function and evolution
  publication-title: Biochim. Biophys. Acta
– volume: 112
  start-page: E7293
  year: 2015
  end-page: E7302
  ident: CR145
  article-title: Methylome analysis reveals an important role for epigenetic changes in the regulation of the response to phosphate starvation
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 55
  start-page: 367
  year: 2020
  end-page: 380
  ident: CR184
  article-title: The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in
  publication-title: Dev. Cell
– volume: 53
  start-page: 403
  year: 2015
  end-page: 424
  ident: CR192
  article-title: Roots shaping their microbiome: global hotspots for microbial activity
  publication-title: Annu. Rev. Phytopathol.
– volume: 43
  start-page: 618
  year: 2017
  end-page: 629 e5
  ident: CR60
  article-title: MAP kinase cascades regulate the cold response by modulating ICE1 protein stability
  publication-title: Dev. Cell
– volume: 10
  start-page: 1391
  year: 1998
  end-page: 1406
  ident: CR87
  article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in
  publication-title: Plant Cell
– volume: 70
  start-page: 321
  year: 2019
  end-page: 346
  ident: CR29
  article-title: Thermomorphogenesis
  publication-title: Annu. Rev. Plant Biol.
– volume: 183
  start-page: 1794
  year: 2020
  end-page: 1808
  ident: CR22
  article-title: Cyclic nucleotide-gated ion channels 14 and 16 promote tolerance to heat and chilling in rice
  publication-title: Plant Physiol.
– volume: 60
  start-page: 796
  year: 2018
  end-page: 804
  ident: CR7
  article-title: Unraveling salt stress signaling in plants
  publication-title: J. Integr. Plant Biol.
– volume: 165
  start-page: 519
  year: 2014
  end-page: 527
  ident: CR101
  article-title: What is stress? Dose–response effects in commonly used in vitro stress assays
  publication-title: Plant Physiol.
– volume: 26
  start-page: 121
  year: 2014
  end-page: 135
  ident: CR157
  article-title: Insights into the maize pan-genome and pan-transcriptome
  publication-title: Plant Cell
– volume: 6
  start-page: 774
  year: 2015
  ident: CR194
  article-title: The effects of bacterial volatile emissions on plant abiotic stress tolerance
  publication-title: Front. Plant Sci.
– volume: 32
  start-page: 610
  year: 2014
  end-page: 613
  ident: CR172
  article-title: Beating the heat
  publication-title: Nat. Biotechnol.
– volume: 182
  start-page: 162
  year: 2020
  end-page: 176.e13
  ident: CR158
  article-title: Pan-genome of wild and cultivated soybeans
  publication-title: Cell
– volume: 7
  year: 2020
  ident: CR23
  article-title: The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants
  publication-title: EMBO J.
– volume: 55
  start-page: 529
  year: 2020
  end-page: 543
  ident: CR2
  article-title: Thriving under stress: how plants balance growth and the stress response
  publication-title: Dev. Cell
– volume: 11
  start-page: 556972
  year: 2020
  ident: CR6
  article-title: Drought stress responses and resistance in plants: from cellular responses to long-distance intercellular communication
  publication-title: Front. Plant Sci.
– volume: 50
  start-page: 571
  year: 1999
  end-page: 599
  ident: CR97
  article-title: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
– volume: 97
  start-page: 587
  year: 2019
  end-page: 602
  ident: CR147
  article-title: Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes
  publication-title: Plant J.
– volume: 9
  year: 2018
  ident: CR11
  article-title: Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2
  publication-title: Nat. Commun.
– volume: 48
  start-page: 697
  year: 2019
  end-page: 709.e5
  ident: CR18
  article-title: The SOS2–SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress
  publication-title: Dev. Cell
– volume: 133
  start-page: 1702
  year: 2003
  end-page: 1716
  ident: CR102
  article-title: Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine
  publication-title: Plant Physiol.
– volume: 29
  start-page: 1952
  year: 2017
  end-page: 1969
  ident: CR131
  article-title: Mutations in eIF5B confer thermosensitive and pleiotropic phenotypes via translation defects in
  publication-title: Plant Cell
– volume: 60
  start-page: 805
  year: 2018
  end-page: 826
  ident: CR63
  article-title: Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack
  publication-title: J. Integr. Plant Biol.
– volume: 32
  start-page: 3425
  year: 2020
  end-page: 3435
  ident: CR75
  article-title: Vascular bundles mediate systemic reactive oxygen signaling during light stress
  publication-title: Plant Cell
– volume: 32
  start-page: 278
  year: 2015
  end-page: 289
  ident: CR49
  article-title: OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in arabidopsis
  publication-title: Dev. Cell
– volume: 583
  start-page: 2982
  year: 2009
  end-page: 2986
  ident: CR42
  article-title: Phosphorylation of the AtrbohF NADPH oxidase by OST1 protein kinase
  publication-title: FEBS Lett.
– volume: 243
  start-page: 489
  year: 2016
  end-page: 500
  ident: CR43
  article-title: Protein kinase OsSAPK8 functions as an essential activator of S-type anion channel OsSLAC1, which is nitrate-selective in rice
  publication-title: Planta
– volume: 154
  start-page: 387
  year: 2020
  end-page: 395
  ident: CR189
  article-title: Identification of novel and selective agonists for ABA receptor PYL3
  publication-title: Plant Physiol. Biochem.
– volume: 13
  start-page: 894
  year: 2020
  end-page: 906
  ident: CR26
  article-title: Cold-Induced CBF–pif3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in
  publication-title: Mol. Plant
– volume: 182
  start-page: 255
  year: 2020
  end-page: 271
  ident: CR109
  article-title: DEAD-Box RNA helicase 42 plays a critical role in pre-mRNA splicing under cold stress
  publication-title: Plant Physiol.
– volume: 140
  start-page: 136
  year: 2010
  end-page: 147
  ident: CR32
  article-title: H2A.Z-containing nucleosomes mediate the thermosensory response in
  publication-title: Cell
– volume: 39
  year: 2020
  ident: CR164
  article-title: Loss of salt tolerance during tomato domestication conferred by variation in a Na /K transporter
  publication-title: EMBO J.
– volume: 52
  start-page: 149
  year: 2011
  end-page: 161
  ident: CR146
  article-title: Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance
  publication-title: Plant Cell Physiol.
– volume: 12
  start-page: 301
  year: 2007
  end-page: 309
  ident: CR122
  article-title: Small RNAs as big players in plant abiotic stress responses and nutrient deprivation
  publication-title: Trends Plant Sci.
– volume: 36
  start-page: 2207
  year: 2013
  end-page: 2218
  ident: CR126
  article-title: Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice ( L.)
  publication-title: Plant Cell Env.
– volume: 21
  year: 2020
  ident: CR114
  article-title: Comprehensive profiling of alternative splicing landscape during cold acclimation in tea plant
  publication-title: BMC Genomics
– volume: 117
  start-page: 3270
  year: 2020
  end-page: 3280
  ident: CR44
  article-title: Mapping proteome-wide targets of protein kinases in plant stress responses
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 578
  start-page: 577
  year: 2020
  end-page: 581
  ident: CR67
  article-title: Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in
  publication-title: Nature
– volume: 153
  start-page: 193
  year: 2013
  end-page: 205
  ident: CR150
  article-title: The nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin
  publication-title: Cell
– volume: 184
  start-page: 3542
  year: 2021
  end-page: 3558.e16
  ident: CR159
  article-title: Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations
  publication-title: Cell
– volume: 63
  start-page: 3
  year: 2020
  end-page: 33
  ident: CR177
  article-title: Genome editing for plant research and crop improvement
  publication-title: J. Integr. Plant Biol.
– volume: 38
  start-page: 1402
  year: 2020
  end-page: 1407
  ident: CR175
  article-title: Targeted, efficient sequence insertion and replacement in rice
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 983
  year: 2020
  end-page: 995
  ident: CR193
  article-title: DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria
  publication-title: Nat. Plants
– volume: 89
  start-page: 291
  year: 2017
  end-page: 309
  ident: CR111
  article-title: Pre-mRNA splicing repression triggers abiotic stress signaling in plants
  publication-title: Plant J.
– volume: 25
  start-page: 604
  year: 2020
  end-page: 617
  ident: CR36
  article-title: The CBL–CIPK calcium signaling network: unified paradigm from 20 years of discoveries
  publication-title: Trends Plant Sci.
– volume: 19
  start-page: 489
  year: 2018
  end-page: 506
  ident: CR140
  article-title: Dynamics and function of DNA methylation in plants
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 26
  start-page: 3314
  year: 2014
  end-page: 3325
  ident: CR16
  article-title: Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in
  publication-title: Plant Cell
– volume: 75
  start-page: 364
  year: 2013
  end-page: 376
  ident: CR38
  article-title: Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of
  publication-title: Plant J.
– volume: 324
  start-page: 1064
  year: 2009
  end-page: 1068
  ident: CR46
  article-title: Regulators of PP2C phosphatase activity function as abscisic acid sensors
  publication-title: Science
– volume: 5
  year: 2016
  ident: CR155
  article-title: Hyperosmotic stress memory in is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity
  publication-title: eLife
– volume: 130
  start-page: 639
  year: 2002
  end-page: 648
  ident: CR90
  article-title: Transcription factor CBF4 is a regulator of drought adaptation in
  publication-title: Plant Physiol.
– volume: 25
  start-page: 2383
  year: 2013
  end-page: 2399
  ident: CR121
  article-title: Biogenesis, turnover, and mode of action of plant microRNAs
  publication-title: Plant Cell
– volume: 214
  start-page: 775
  year: 2002
  end-page: 782
  ident: CR70
  article-title: The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling
  publication-title: Planta
– volume: 47
  start-page: 827
  year: 2015
  end-page: 833
  ident: CR163
  article-title: Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice
  publication-title: Nat. Genet.
– volume: 2
  start-page: ra45
  year: 2009
  ident: CR71
  article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli
  publication-title: Sci. Signal.
– volume: 62
  start-page: 563
  year: 2020
  end-page: 580
  ident: CR141
  article-title: Epigenetic regulation in plant abiotic stress responses
  publication-title: J. Integr. Plant Biol.
– volume: 366
  start-page: eaaw8848
  year: 2019
  ident: CR190
  article-title: Dynamic control of plant water use using designed ABA receptor agonists
  publication-title: Science
– volume: 21
  start-page: 677
  year: 2016
  end-page: 685
  ident: CR62
  article-title: The role of MAPK modules and ABA during abiotic stress signaling
  publication-title: Trends Plant Sci.
– volume: 32
  start-page: 295
  year: 2020
  end-page: 318
  ident: CR185
  article-title: Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses
  publication-title: Plant Cell
– volume: 12
  year: 2019
  ident: CR41
  article-title: Two clade A phosphatase 2Cs expressed in guard cells physically interact with abscisic acid signaling components to induce stomatal closure in rice
  publication-title: Rice
– volume: 32
  start-page: 703
  year: 2020
  end-page: 721
  ident: CR148
  article-title: The arabidopsis nodulin homeobox factor AtNDX interacts with AtRING1A/B and negatively regulates abscisic acid signaling
  publication-title: Plant Cell
– volume: 176
  start-page: 2082
  year: 2018
  end-page: 2094
  ident: CR171
  article-title: Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development
  publication-title: Plant Physiol.
– volume: 130
  start-page: 2129
  year: 2002
  end-page: 2141
  ident: CR93
  article-title: Transcriptome changes for in response to salt, osmotic, and cold stress
  publication-title: Plant Physiol.
– volume: 70
  start-page: 753
  year: 2019
  end-page: 780
  ident: CR8
  article-title: Crop improvement through temperature resilience
  publication-title: Annu. Rev. Plant Biol.
– volume: 24
  start-page: 2546
  year: 2012
  end-page: 2561
  ident: CR66
  article-title: A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in
  publication-title: Plant Cell
– volume: 66
  start-page: 5997
  year: 2015
  end-page: 6008
  ident: CR144
  article-title: Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in
  publication-title: J. Exp. Bot.
– volume: 63
  start-page: 541
  year: 2009
  end-page: 556
  ident: CR195
  article-title: Plant-growth-promoting rhizobacteria
  publication-title: Annu. Rev. Microbiol.
– volume: 5
  start-page: 991
  year: 2010
  end-page: 994
  ident: CR59
  article-title: Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants
  publication-title: Plant Signal. Behav.
– volume: 324
  start-page: 1068
  year: 2009
  end-page: 1071
  ident: CR47
  article-title: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins
  publication-title: Science
– volume: 6
  year: 2015
  ident: CR115
  article-title: ABA signalling is fine-tuned by antagonistic HAB1 variants
  publication-title: Nat. Commun.
– volume: 67
  start-page: 261
  year: 2016
  end-page: 285
  ident: CR182
  article-title: TOR signaling and nutrient sensing
  publication-title: Annu. Rev. Plant Biol.
– volume: 6
  year: 2015
  ident: 413_CR115
  publication-title: Nat. Commun.
– volume: 184
  start-page: 3542
  year: 2021
  ident: 413_CR159
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.046
– volume: 24
  start-page: 2546
  year: 2012
  ident: 413_CR66
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.100107
– volume: 30
  start-page: 360-U173
  year: 2012
  ident: 413_CR160
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2120
– volume: 55
  start-page: 529
  year: 2020
  ident: 413_CR2
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.10.012
– volume: 102
  start-page: 916
  year: 2020
  ident: 413_CR118
  publication-title: Plant J.
  doi: 10.1111/tpj.14671
– volume: 49
  start-page: 1384
  year: 2011
  ident: 413_CR168
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2011.09.012
– volume: 5
  year: 2016
  ident: 413_CR155
  publication-title: eLife
  doi: 10.7554/eLife.13546
– volume: 12
  year: 2019
  ident: 413_CR41
  publication-title: Rice
– volume: 167
  start-page: 313
  year: 2016
  ident: 413_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2016.08.029
– volume: 214
  start-page: 775
  year: 2002
  ident: 413_CR70
  publication-title: Planta
  doi: 10.1007/s00425-001-0675-3
– volume: 217
  start-page: 1161
  year: 2018
  ident: 413_CR162
  publication-title: N. Phytol.
  doi: 10.1111/nph.14882
– volume: 366
  start-page: eaaw8848
  year: 2019
  ident: 413_CR190
  publication-title: Science
  doi: 10.1126/science.aaw8848
– volume: 174
  start-page: 1216
  year: 2017
  ident: 413_CR130
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00269
– volume: 25
  start-page: 342
  year: 2013
  ident: 413_CR108
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.108340
– volume: 116
  start-page: 22376
  year: 2019
  ident: 413_CR117
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1906244116
– volume: 14
  start-page: 315
  year: 2020
  ident: 413_CR25
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.11.022
– volume: 4
  year: 2015
  ident: 413_CR68
  publication-title: eLife
– volume: 165
  start-page: 519
  year: 2014
  ident: 413_CR101
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.234641
– volume: 163
  start-page: 625
  year: 2013
  ident: 413_CR34
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.222901
– volume: 514
  start-page: 367
  year: 2014
  ident: 413_CR9
  publication-title: Nature
  doi: 10.1038/nature13593
– volume: 186
  start-page: 1721
  year: 2021
  ident: 413_CR77
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab157
– volume: 186
  start-page: 833
  year: 2010
  ident: 413_CR105
  publication-title: N. Phytol.
  doi: 10.1111/j.1469-8137.2010.03225.x
– volume: 50
  start-page: 571
  year: 1999
  ident: 413_CR97
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.50.1.571
– volume: 12
  year: 2016
  ident: 413_CR133
  publication-title: PLoS Genet.
– volume: 30
  start-page: 229
  year: 2020
  ident: 413_CR132
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.12.012
– volume: 250
  start-page: 161
  year: 1998
  ident: 413_CR89
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1998.9267
– volume: 56
  start-page: 1762
  year: 2015
  ident: 413_CR129
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv096
– volume: 19
  start-page: 489
  year: 2018
  ident: 413_CR140
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0016-z
– volume: 11
  year: 2020
  ident: 413_CR54
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19977-2
– volume: 578
  start-page: 577
  year: 2020
  ident: 413_CR67
  publication-title: Nature
  doi: 10.1038/s41586-020-2032-3
– volume: 61
  start-page: 1206
  year: 2019
  ident: 413_CR137
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12780
– volume: 53
  start-page: 247
  year: 2002
  ident: 413_CR84
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.53.091401.143329
– volume: 89
  start-page: 291
  year: 2017
  ident: 413_CR111
  publication-title: Plant J.
  doi: 10.1111/tpj.13383
– volume: 30
  start-page: 1410
  year: 2020
  ident: 413_CR186
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.01.089
– volume: 6
  start-page: 983
  year: 2020
  ident: 413_CR193
  publication-title: Nat. Plants
  doi: 10.1038/s41477-020-0707-2
– volume: 19
  start-page: 20
  year: 2021
  ident: 413_CR165
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13443
– volume: 25
  start-page: 604
  year: 2020
  ident: 413_CR36
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2020.01.009
– volume: 104
  start-page: 10726
  year: 2007
  ident: 413_CR56
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0702595104
– volume: 9
  year: 2018
  ident: 413_CR11
  publication-title: Nat. Commun.
– volume: 60
  start-page: 575
  year: 2009
  ident: 413_CR99
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.03981.x
– volume: 15
  year: 2014
  ident: 413_CR113
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-431
– volume: 324
  start-page: 1064
  year: 2009
  ident: 413_CR46
  publication-title: Science
  doi: 10.1126/science.1172408
– volume: 32
  start-page: 278
  year: 2015
  ident: 413_CR49
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.12.023
– volume: 52
  start-page: 149
  year: 2011
  ident: 413_CR146
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcq182
– volume: 130
  start-page: 2129
  year: 2002
  ident: 413_CR93
  publication-title: Plant Physiol.
  doi: 10.1104/pp.008532
– volume: 117
  start-page: 3270
  year: 2020
  ident: 413_CR44
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1919901117
– volume: 324
  start-page: 1068
  year: 2009
  ident: 413_CR47
  publication-title: Science
  doi: 10.1126/science.1173041
– volume: 31
  start-page: 629
  year: 2002
  ident: 413_CR21
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2002.01384.x
– volume: 111
  start-page: 8547
  year: 2014
  ident: 413_CR152
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1402275111
– volume: 32
  start-page: 703
  year: 2020
  ident: 413_CR148
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00604
– volume: 62
  start-page: 563
  year: 2020
  ident: 413_CR141
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12901
– volume: 113
  start-page: 12580
  year: 2016
  ident: 413_CR149
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1613910113
– volume: 8
  year: 2017
  ident: 413_CR191
  publication-title: Nat. Commun.
– volume: 13
  start-page: 894
  year: 2020
  ident: 413_CR26
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.04.006
– volume: 58
  start-page: 1222
  year: 2017
  ident: 413_CR14
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcw230
– volume: 161
  start-page: 1375
  year: 2013
  ident: 413_CR125
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.208702
– year: 2014
  ident: 413_CR142
  publication-title: Plant Abiotic Stress
  doi: 10.1002/9781118764374.ch8
– volume: 572
  start-page: 341
  year: 2019
  ident: 413_CR15
  publication-title: Nature
  doi: 10.1038/s41586-019-1449-z
– volume: 29
  start-page: 1952
  year: 2017
  ident: 413_CR131
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00808
– volume: 62
  start-page: 25
  year: 2020
  ident: 413_CR48
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12899
– volume: 51
  start-page: 222
  year: 2019
  ident: 413_CR199
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.08.008
– volume: 22
  start-page: 1184
  year: 2012
  ident: 413_CR112
  publication-title: Genome Res.
  doi: 10.1101/gr.134106.111
– volume: 82
  start-page: 232
  year: 2015
  ident: 413_CR61
  publication-title: Plant J.
  doi: 10.1111/tpj.12808
– volume: 46
  start-page: 1777
  year: 2018
  ident: 413_CR116
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1229
– volume: 90
  start-page: 698
  year: 2017
  ident: 413_CR73
  publication-title: Plant J.
  doi: 10.1111/tpj.13492
– volume: 239
  start-page: 47
  year: 2014
  ident: 413_CR180
  publication-title: Planta
  doi: 10.1007/s00425-013-1960-7
– volume: 111
  start-page: 6497
  year: 2014
  ident: 413_CR74
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1319955111
– volume: 18
  year: 2018
  ident: 413_CR174
  publication-title: BMC Plant Biol.
– volume: 43
  start-page: 630
  year: 2017
  ident: 413_CR197
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.09.025
– volume: 11
  year: 2020
  ident: 413_CR51
  publication-title: Nat. Commun.
– volume: 97
  start-page: 587
  year: 2019
  ident: 413_CR147
  publication-title: Plant J.
  doi: 10.1111/tpj.14144
– volume: 106
  start-page: 21425
  year: 2009
  ident: 413_CR39
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0912021106
– volume: 67
  start-page: 25
  year: 2016
  ident: 413_CR64
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043015-111854
– volume: 182
  start-page: 162
  year: 2020
  ident: 413_CR158
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.023
– volume: 67
  start-page: 261
  year: 2016
  ident: 413_CR182
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043014-114648
– volume: 48
  start-page: 697
  year: 2019
  ident: 413_CR18
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.02.010
– volume: 116
  start-page: 14309
  year: 2019
  ident: 413_CR12
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1900774116
– volume: 34
  start-page: 137
  year: 2003
  ident: 413_CR85
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01708.x
– volume: 30
  start-page: 4815
  year: 2020
  ident: 413_CR196
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.09.016
– volume: 21
  start-page: 677
  year: 2016
  ident: 413_CR62
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.04.004
– volume: 7
  year: 2020
  ident: 413_CR23
  publication-title: EMBO J.
– volume: 14
  start-page: 1675
  year: 2002
  ident: 413_CR92
  publication-title: Plant Cell
  doi: 10.1105/tpc.003483
– volume: 111
  start-page: 9651
  year: 2014
  ident: 413_CR183
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1316717111
– volume: 182
  start-page: 255
  year: 2020
  ident: 413_CR109
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.00832
– volume: 63
  start-page: 53
  year: 2021
  ident: 413_CR4
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13061
– volume: 17
  start-page: 2370
  year: 2019
  ident: 413_CR124
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13154
– volume: 14
  start-page: eabf0322
  year: 2021
  ident: 413_CR76
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.abf0322
– volume: 25
  start-page: 2383
  year: 2013
  ident: 413_CR121
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.113159
– volume: 67
  start-page: 702
  year: 2017
  ident: 413_CR139
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.031
– volume: 75
  start-page: 364
  year: 2013
  ident: 413_CR38
  publication-title: Plant J.
  doi: 10.1111/tpj.12205
– volume: 23
  start-page: 1043
  year: 2013
  ident: 413_CR188
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.95
– volume: 15
  start-page: 405
  year: 2017
  ident: 413_CR82
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12659
– volume: 36
  start-page: 2207
  year: 2013
  ident: 413_CR126
  publication-title: Plant Cell Env.
  doi: 10.1111/pce.12130
– volume: 17
  start-page: 1697
  year: 2019
  ident: 413_CR176
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13124
– volume: 140
  start-page: 136
  year: 2010
  ident: 413_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.006
– volume: 307
  start-page: 110899
  year: 2021
  ident: 413_CR173
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2021.110899
– volume: 583
  start-page: 2982
  year: 2009
  ident: 413_CR42
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.08.033
– volume: 33
  start-page: 1689
  year: 2011
  ident: 413_CR169
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-011-0620-x
– volume: 99
  start-page: 1203
  year: 2019
  ident: 413_CR119
  publication-title: Plant J.
  doi: 10.1111/tpj.14416
– volume: 61
  start-page: 25
  year: 2010
  ident: 413_CR100
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.04025.x
– volume: 153
  start-page: 193
  year: 2013
  ident: 413_CR150
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.033
– volume: 9
  start-page: 230
  year: 2011
  ident: 413_CR179
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2010.00547.x
– volume: 28
  start-page: 466
  year: 2018
  ident: 413_CR57
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.12.046
– volume: 163
  start-page: 253
  year: 2013
  ident: 413_CR17
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.217810
– volume: 160
  start-page: 1209
  year: 2015
  ident: 413_CR24
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.046
– volume: 61
  start-page: 3199
  year: 2010
  ident: 413_CR40
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq151
– volume: 6
  start-page: 774
  year: 2015
  ident: 413_CR194
  publication-title: Front. Plant Sci.
– volume: 37
  year: 2018
  ident: 413_CR198
  publication-title: EMBO J.
– volume: 106
  start-page: 477
  year: 2001
  ident: 413_CR103
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00460-3
– volume: 24
  start-page: 1821
  year: 2014
  ident: 413_CR153
  publication-title: Genome Res.
  doi: 10.1101/gr.177659.114
– volume: 28
  start-page: 666
  year: 2018
  ident: 413_CR19
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.01.023
– volume: 112
  start-page: E7293
  year: 2015
  ident: 413_CR145
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1522301112
– volume: 11
  year: 2020
  ident: 413_CR53
  publication-title: Nat. Commun.
– volume: 354
  start-page: 886
  year: 2016
  ident: 413_CR27
  publication-title: Science
  doi: 10.1126/science.aaf6005
– volume: 112
  start-page: 3134
  year: 2015
  ident: 413_CR37
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1420944112
– volume: 350
  start-page: 438
  year: 2015
  ident: 413_CR13
  publication-title: Science
  doi: 10.1126/science.aac6014
– volume: 183
  start-page: 1794
  year: 2020
  ident: 413_CR22
  publication-title: Plant Physiol.
  doi: 10.1104/pp.20.00591
– volume: 41
  start-page: 1186
  year: 2018
  ident: 413_CR170
  publication-title: Plant Cell Env.
  doi: 10.1111/pce.12968
– volume: 66
  start-page: 117
  year: 2017
  ident: 413_CR200
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.02.016
– volume: 60
  start-page: 796
  year: 2018
  ident: 413_CR7
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12689
– volume: 11
  start-page: 315
  year: 2018
  ident: 413_CR187
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2017.12.013
– volume: 18
  start-page: 2051
  year: 2006
  ident: 413_CR123
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041673
– volume: 354
  start-page: 897
  year: 2016
  ident: 413_CR28
  publication-title: Science
  doi: 10.1126/science.aaf5656
– volume: 32
  start-page: 610
  year: 2014
  ident: 413_CR172
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2948
– volume: 12
  year: 2021
  ident: 413_CR55
  publication-title: Nat. Commun.
– volume: 61
  start-page: 478
  year: 2019
  ident: 413_CR45
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12714
– volume: 10
  start-page: 1391
  year: 1998
  ident: 413_CR87
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.8.1391
– volume: 39
  year: 2020
  ident: 413_CR164
  publication-title: EMBO J.
– volume: 63
  start-page: 541
  year: 2009
  ident: 413_CR195
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.62.081307.162918
– volume: 12
  start-page: 301
  year: 2007
  ident: 413_CR122
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2007.05.001
– volume: 70
  start-page: 321
  year: 2019
  ident: 413_CR29
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050718-095919
– volume: 42
  start-page: 657
  year: 2000
  ident: 413_CR91
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1006321900483
– volume: 43
  start-page: 4121
  year: 2015
  ident: 413_CR127
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv234
– volume: 37
  start-page: 1141
  year: 2005
  ident: 413_CR161
  publication-title: Nat. Genet.
  doi: 10.1038/ng1643
– volume: 368
  start-page: 266
  year: 2020
  ident: 413_CR5
  publication-title: Science
  doi: 10.1126/science.aaz7614
– volume: 26
  start-page: 3314
  year: 2014
  ident: 413_CR16
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.129171
– volume: 57
  start-page: 781
  year: 2006
  ident: 413_CR86
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105444
– volume: 5
  start-page: 991
  year: 2010
  ident: 413_CR59
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.5.8.12225
– volume: 585
  start-page: 256
  year: 2020
  ident: 413_CR30
  publication-title: Nature
  doi: 10.1038/s41586-020-2644-7
– volume: 32
  start-page: 3425
  year: 2020
  ident: 413_CR75
  publication-title: Plant Cell
  doi: 10.1105/tpc.20.00453
– volume: 38
  start-page: 819
  year: 2019
  ident: 413_CR65
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-019-02383-4
– volume: 66
  start-page: 5997
  year: 2015
  ident: 413_CR144
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv312
– volume: 11
  start-page: 556972
  year: 2020
  ident: 413_CR6
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.556972
– volume: 176
  start-page: 2082
  year: 2018
  ident: 413_CR171
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01432
– volume: 21
  start-page: 661
  year: 2020
  ident: 413_CR178
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-00288-9
– volume: 130
  start-page: 639
  year: 2002
  ident: 413_CR90
  publication-title: Plant Physiol.
  doi: 10.1104/pp.006478
– volume: 181
  start-page: 275
  year: 2009
  ident: 413_CR33
  publication-title: N. Phytol.
  doi: 10.1111/j.1469-8137.2008.02682.x
– volume: 107
  start-page: 8023
  year: 2010
  ident: 413_CR69
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0912030107
– volume: 69
  start-page: 100
  year: 2018
  ident: 413_CR181
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.002
– volume: 99
  start-page: 11507
  year: 2002
  ident: 413_CR107
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.172399299
– volume: 3
  start-page: 594
  year: 2010
  ident: 413_CR154
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssq014
– year: 2021
  ident: 413_CR80
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a040014
– volume: 7
  start-page: 1079
  year: 2016
  ident: 413_CR104
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01079
– volume: 13
  year: 2013
  ident: 413_CR143
  publication-title: BMC Plant Biol.
– volume: 115
  start-page: 13123
  year: 2018
  ident: 413_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1816991115
– volume: 12
  start-page: 568
  year: 2009
  ident: 413_CR81
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2009.07.012
– volume: 180
  start-page: 3
  year: 2011
  ident: 413_CR98
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2010.06.019
– volume: 6
  year: 2015
  ident: 413_CR166
  publication-title: Nat. Commun.
– volume: 11
  year: 2020
  ident: 413_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15239-3
– volume: 26
  start-page: 121
  year: 2014
  ident: 413_CR157
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.119982
– volume: 575
  start-page: 109
  year: 2019
  ident: 413_CR1
  publication-title: Nature
  doi: 10.1038/s41586-019-1679-0
– volume: 2
  start-page: ra45
  year: 2009
  ident: 413_CR71
  publication-title: Sci. Signal.
– volume: 50
  start-page: 347
  year: 2007
  ident: 413_CR135
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03052.x
– volume: 53
  start-page: 403
  year: 2015
  ident: 413_CR192
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-082712-102342
– volume: 72
  start-page: 5876
  year: 2021
  ident: 413_CR138
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erab008
– volume: 63
  start-page: 3
  year: 2020
  ident: 413_CR177
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13063
– volume: 43
  start-page: 618
  year: 2017
  ident: 413_CR60
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.09.024
– volume: 48
  start-page: 1233
  year: 2016
  ident: 413_CR167
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3636
– volume: 2
  start-page: 282
  year: 2002
  ident: 413_CR94
  publication-title: Funct. Integr.Genomics
  doi: 10.1007/s10142-002-0070-6
– volume: 7
  start-page: 1273
  year: 2006
  ident: 413_CR151
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400791
– volume: 94
  start-page: 1035
  year: 1997
  ident: 413_CR88
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.94.3.1035
– volume: 25
  start-page: 3553
  year: 2013
  ident: 413_CR72
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.114595
– volume: 47
  start-page: 827
  year: 2015
  ident: 413_CR163
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3305
– volume: 6
  year: 2015
  ident: 413_CR106
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9139
– volume: 8
  year: 2007
  ident: 413_CR83
  publication-title: Genome Biol.
– volume: 62
  start-page: 258
  year: 2020
  ident: 413_CR96
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12918
– volume: 55
  start-page: 367
  year: 2020
  ident: 413_CR184
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.08.005
– volume: 132
  start-page: 666
  year: 2003
  ident: 413_CR35
  publication-title: Plant Physiol.
  doi: 10.1104/pp.102.011999
– volume: 71
  start-page: 1598
  year: 2020
  ident: 413_CR110
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz523
– volume: 10
  year: 2014
  ident: 413_CR156
  publication-title: PLoS Genet.
– volume: 12
  start-page: 444
  year: 2007
  ident: 413_CR95
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2007.07.002
– volume: 243
  start-page: 489
  year: 2016
  ident: 413_CR43
  publication-title: Planta
  doi: 10.1007/s00425-015-2418-x
– volume: 7
  year: 2018
  ident: 413_CR10
  publication-title: eLife
  doi: 10.7554/eLife.41845
– volume: 38
  year: 2019
  ident: 413_CR134
  publication-title: EMBO J.
  doi: 10.15252/embj.201899819
– volume: 154
  start-page: 387
  year: 2020
  ident: 413_CR189
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.05.005
– volume: 70
  start-page: 753
  year: 2019
  ident: 413_CR8
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050718-100016
– volume: 35
  start-page: 239
  year: 2019
  ident: 413_CR79
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100617-062949
– volume: 1819
  start-page: 104
  year: 2012
  ident: 413_CR31
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2011.10.002
– volume: 183
  start-page: 109485
  year: 2019
  ident: 413_CR120
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.109485
– volume: 38
  start-page: 1402
  year: 2020
  ident: 413_CR175
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0581-5
– volume: 5
  start-page: 1279
  year: 2013
  ident: 413_CR128
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.11.019
– volume: 103
  start-page: 634
  year: 2020
  ident: 413_CR50
  publication-title: Plant J.
  doi: 10.1111/tpj.14756
– volume: 32
  start-page: 295
  year: 2020
  ident: 413_CR185
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00335
– volume: 99
  start-page: 752
  year: 2019
  ident: 413_CR136
  publication-title: Plant J.
  doi: 10.1111/tpj.14345
– volume: 556
  start-page: 235
  year: 2018
  ident: 413_CR78
  publication-title: Nature
  doi: 10.1038/s41586-018-0009-2
– volume: 133
  start-page: 1702
  year: 2003
  ident: 413_CR102
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.026914
– volume: 60
  start-page: 805
  year: 2018
  ident: 413_CR63
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12654
– volume: 21
  year: 2020
  ident: 413_CR114
  publication-title: BMC Genomics
– volume: 63
  start-page: 494
  year: 2021
  ident: 413_CR58
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13058
SSID ssj0016173
Score 2.7569675
SecondaryResourceType review_article
Snippet Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms 631/208/2491
631/208/8
631/337
631/449
Abiotic stress
Agriculture
Animal Genetics and Genomics
Atmosphere - chemistry
Biomedical and Life Sciences
Biomedicine
Cancer Research
Carbon Dioxide - metabolism
Crops
Crops, Agricultural - genetics
Crops, Agricultural - growth & development
Crops, Agricultural - metabolism
Drought
Droughts
Ecosystem
Gene Expression Regulation, Plant
Gene Function
Human Genetics
Information processing
Molecular modelling
Oxygen - metabolism
Plants - genetics
Plants - metabolism
Post-translation
Review Article
Salinity
Soil - chemistry
Stress, Physiological - genetics
Temperature
Transcription
Title Abiotic stress responses in plants
URI https://link.springer.com/article/10.1038/s41576-021-00413-0
https://www.ncbi.nlm.nih.gov/pubmed/34561623
https://www.proquest.com/docview/2621430606
https://www.proquest.com/docview/2576655552
Volume 23
WOSCitedRecordID wos000698871700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1471-0064
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0016173
  issn: 1471-0056
  databaseCode: 7RV
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WL-hLt35t3rrglr61JrEkW9bT6ErLHkYIZSt5M7Z0gkBxsjgt7L_vne2klNK-1GC9SJbFT6e7k-50B3BaxnFBr4qMRoyUlcwHlYiQxTv6WPg2zuxvPRxm47EZdQdudedWueSJDaN2U8tn5H2RChLtA9K3f8z-RZw1iq2rXQqNNdjgtNlM53q82nCx6t442BMDjjjmZXdpZiCzfk2CS7P7LdcoznDwXDC90DZfWEobAXT98b1D_wQ7neoZXrS0sgsfsNqDrTYZ5f99OLkoJ1OqCtvrI-G89Z7FOpxU4eyO_WUO4O_11Z_LX1GXQSEi0JNFZLD0zmgpDdLSVKlCkvC2KKUzTnphysxaoa3G1GVKmVghJpY2hIn3InUFykNYr6YVfoFQeqsdTaD3njY5qcm8K4xyCWqnnLEygHgJX2678OKc5eIub8zcMstbyHOCPG8gzwcBnK2-mbXBNd5sfbSEN-8WWp0_YRvA8aqalgjbPYoKp_fUhjpKE3pEAJ_b2Vz9TrICSSpgAOfL6X3q_PWxfH17LN9gW_A1ica7-wjWF_N7_A6b9mExqec9ItKb215Dqk2ZUZldxj3Y-Hk1HN302P909AgNcO2r
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQwcFQKqFx4UwIFAoITRN3YzsMHhKpC1arLikORenMTeyytVGWXzRbUn-IbmYmTrVBFbz0QKSc7zijzzrwA3tZpWtGtEl0gJspKloNKJMjqHX0qfOgzOy4mk_L4WH9bg99DLQynVQ4ysRPUbmb5H_m2yAWp9hHZ25_mPxKeGsXR1WGERiCLQzz_RS5b-_HgM-H3nRB7X45295N-qkBCgGTLRGPtnS6k1EjkqnKFpPVsVUunnfRC16W1orAF5q5USqcKMbPkJGXei9xVKOncG3BTSSGZi8rdVUoJuwpdQj8J_IR7bPZFOiNZbrekKAtO9-UVxRMV_laEl6zbS5HZTuHt3fvfPtV9uNub1vFO4IUHsIbNQ7gdhm2eP4I3O_V0RktxKI-JFyE7GNt42sTzU84HegzfrwXAJ7DezBp8CrH0tnBEoN57cuJyXXpXaeUyLJxy2soI0gFdxvbt03mKx6npwviyNAHFhlBsOhSbUQTvV8_MQ_OQK3dvDeg0vSBpzQUuI3i9WiYRwHGdqsHZGe2hg_KMLhHBZqCe1eskG8hk4kbwYSCni8P_Dcuzq2F5BRv7R1_HZnwwOXwOdwSXhHSZ7Fuwvlyc4Qu4ZX8up-3iZccgMZxcN5n9AblURlw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQwcFS2UHHhTQkUCAhOEO3GduL4gFChXVG1Wq0QSL25iT2WVqqyy2YL6q_xdYzjZCtU0VsPRMrJzmSUGc8j8wJ4U6VpSbdIlERMhOFeDgqWoFfv6FLmQp_ZIzmZFMfHaroBv_taGJ9W2cvEVlDbufH_yIcsZ6TaR2RvD12XFjHdG39c_Ej8BCkfae3HaQQWOcTzX-S-NR8O9ojWbxkb73_7_CXpJgwkhFS2ShRWzirJuUJiXZELJA1oyopbZbljqiqMYdJIzG0hhEoFYmbIYcqcY7ktkRPcG7ApOTk9A9j8tD-Zfl3HMPIQ305J_Ce-42ZXsjPixbAhtSl98q9fEX6-wt9q8ZKteylO26q_8d3_-cPdgzud0R3vhlNyHzawfgC3whjO84fwereazWkpDoUz8TLkDWMTz-p4ceozhR7B92tB8DEM6nmNTyDmzkhLrOucI_cuV4WzpRI2Q2mFVYZHkPak06ZrrO7ne5zqNsDPCx3IrYncuiW3HkXwbv3MIrQVuXL3Tk9a3YmYRl_QNYJX62USDj7iU9Y4P6M9BCjP6GIRbAdOWr-Oe9OZjN8I3vesdQH837g8vRqXl7BF3KWPDiaHz-A287UibYr7DgxWyzN8DjfNz9WsWb7oTksMJ9fNZ38AQ8hQug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Abiotic+stress+responses+in+plants&rft.jtitle=Nature+reviews.+Genetics&rft.au=Zhang%2C+Huiming&rft.au=Zhu%2C+Jianhua&rft.au=Gong+Zhizhong&rft.au=Jian-Kang%2C+Zhu&rft.date=2022-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=23&rft.issue=2&rft.spage=104&rft.epage=119&rft_id=info:doi/10.1038%2Fs41576-021-00413-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon