Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints
In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventiona...
Saved in:
| Published in: | Physics letters. A Vol. 373; no. 18; pp. 1639 - 1643 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.04.2009
|
| Subjects: | |
| ISSN: | 0375-9601, 1873-2429 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method. |
|---|---|
| AbstractList | In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method. |
| Author | Li, Zhan Zhang, Yunong |
| Author_xml | – sequence: 1 givenname: Yunong surname: Zhang fullname: Zhang, Yunong email: zhynong@mail.sysu.edu.cn, ynzhang@ieee.org – sequence: 2 givenname: Zhan surname: Li fullname: Li, Zhan email: lizhan@mail2.sysu.edu.cn |
| BookMark | eNqFkc1OWzEQha0KpAboK1Retat765-LE0ssqFChlZC6gU03lmOPwaljB9s3NA_Ae9dXaRewgNVopPMdzZxzhA5iioDQR0p6Sqj4suo397sSoOqeESJ7wntC6Ts0o4s579jA5AGaET4_7aQg9D06KmVFSCOJnKGnX_c63uEIY9ahjfqY8m_sUsYpBh8BlxTG6lPEyeHq19Btdd75hpgUt_AHP4zaZl29wZuc7rJe4zIuV2Aqruk5MNnp3EEjgq-7yaDUrH2s5QQdOh0KfPg3j9Ht5bebi-_d9c-rHxdfrzvTzq-dZM5aSiW3ZMmsdHIpKJvrBbHOaq2Fk4I5YyWnlnLRVjY4zq2UemHFKRf8GH3e-7ZbH0YoVa19MRCCjpDGoiThYhgkY0356VUlH4Y5X9DJUuyFJqdSMji1yX7dXlaUqKkftVL_-1FTP4pw1fpp4NkL0Piqp6inUMLb-Pkeh5bX1kNWxXiIBqzPLX1lk3_L4i9oTbeZ |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2019_04_054 crossref_primary_10_1109_TCYB_2021_3051261 crossref_primary_10_1016_j_eswa_2024_124546 crossref_primary_10_1016_j_neucom_2021_01_015 crossref_primary_10_1016_j_cam_2021_113824 crossref_primary_10_1109_TII_2021_3099819 crossref_primary_10_1002_rnc_8013 crossref_primary_10_1007_s11071_025_11075_6 crossref_primary_10_1016_j_neunet_2023_11_058 crossref_primary_10_1016_j_robot_2018_09_003 crossref_primary_10_1016_j_neucom_2022_03_010 crossref_primary_10_1080_00207721_2024_2425952 crossref_primary_10_1016_j_conengprac_2013_06_001 crossref_primary_10_1016_j_eswa_2010_04_007 crossref_primary_10_1007_s11075_010_9410_0 crossref_primary_10_1109_TII_2019_2899428 crossref_primary_10_1109_ACCESS_2022_3226253 crossref_primary_10_1016_j_amc_2011_04_085 crossref_primary_10_1109_TNNLS_2021_3138900 crossref_primary_10_1016_j_jfranklin_2023_09_009 crossref_primary_10_1016_j_matcom_2025_01_024 crossref_primary_10_1080_14697688_2012_691175 crossref_primary_10_1109_TNNLS_2019_2944992 crossref_primary_10_1016_j_jfranklin_2024_106898 crossref_primary_10_1016_j_neucom_2021_05_096 crossref_primary_10_1109_TII_2024_3476530 crossref_primary_10_1016_j_neucom_2022_08_066 crossref_primary_10_3390_math12132090 crossref_primary_10_1186_s13662_019_2406_8 crossref_primary_10_1016_j_mbs_2015_11_009 crossref_primary_10_1109_ACCESS_2018_2878856 crossref_primary_10_1109_TAC_2018_2810039 crossref_primary_10_1007_s00521_019_04639_2 crossref_primary_10_1109_TETC_2021_3057395 crossref_primary_10_1016_j_jfranklin_2024_107469 crossref_primary_10_1016_j_neucom_2012_07_043 crossref_primary_10_1109_TII_2023_3241683 crossref_primary_10_1007_s13370_025_01268_y crossref_primary_10_1109_TSMCB_2012_2210038 crossref_primary_10_1109_TSMC_2024_3514919 crossref_primary_10_1016_j_ipl_2010_09_013 crossref_primary_10_1016_j_eswa_2021_116272 crossref_primary_10_1016_j_ins_2022_11_157 crossref_primary_10_1109_TCSI_2022_3153560 crossref_primary_10_1016_j_neucom_2018_11_071 crossref_primary_10_1016_j_mbs_2016_07_011 crossref_primary_10_26599_TST_2024_9010127 crossref_primary_10_1016_j_mex_2024_102895 crossref_primary_10_1007_s11045_012_0189_0 crossref_primary_10_1007_s40435_023_01367_3 crossref_primary_10_1109_ACCESS_2019_2941961 crossref_primary_10_1109_MCI_2012_2215139 crossref_primary_10_1007_s00521_011_0692_5 crossref_primary_10_1109_TMECH_2018_2799724 crossref_primary_10_1016_j_neucom_2018_07_067 crossref_primary_10_1109_TFUZZ_2020_2981001 crossref_primary_10_1016_j_physleta_2017_03_025 crossref_primary_10_1007_s00521_014_1744_4 crossref_primary_10_1016_j_mbs_2019_108215 crossref_primary_10_1007_s10462_024_11026_4 crossref_primary_10_1007_s00500_013_1124_5 crossref_primary_10_1109_TNNLS_2025_3526620 crossref_primary_10_1109_TNNLS_2020_3041364 crossref_primary_10_1016_j_neucom_2024_129156 crossref_primary_10_1016_j_neucom_2011_02_007 crossref_primary_10_1109_TNNLS_2020_2986275 crossref_primary_10_1109_TNNLS_2018_2885042 crossref_primary_10_1016_j_neucom_2022_05_089 crossref_primary_10_1109_TCSI_2012_2188944 crossref_primary_10_1016_j_physa_2019_123846 crossref_primary_10_1016_j_asoc_2015_11_023 crossref_primary_10_1016_j_neucom_2017_06_030 crossref_primary_10_1016_j_tcs_2019_07_027 crossref_primary_10_3390_electronics11101636 crossref_primary_10_1109_TIE_2021_3082060 crossref_primary_10_1109_TII_2022_3175962 crossref_primary_10_1016_j_neucom_2019_03_053 crossref_primary_10_1049_cit2_12161 crossref_primary_10_1016_j_neucom_2019_01_024 crossref_primary_10_3390_axioms13080540 crossref_primary_10_1016_j_matcom_2021_03_014 crossref_primary_10_1007_s00521_012_0842_4 crossref_primary_10_1109_TNNLS_2019_2891252 crossref_primary_10_1007_s12559_017_9510_4 crossref_primary_10_1016_j_neucom_2022_12_008 crossref_primary_10_1016_j_physleta_2012_04_008 crossref_primary_10_1109_TNNLS_2020_3009201 crossref_primary_10_1016_j_tcs_2023_114328 crossref_primary_10_1007_s00521_023_09264_8 crossref_primary_10_1007_s00521_010_0445_x crossref_primary_10_1007_s10044_017_0608_9 crossref_primary_10_1016_j_neucom_2020_06_051 crossref_primary_10_1016_j_neucom_2020_10_110 crossref_primary_10_1007_s11063_021_10726_0 crossref_primary_10_1016_j_chaos_2018_06_012 crossref_primary_10_1007_s00521_017_3010_z crossref_primary_10_1007_s11075_012_9690_7 crossref_primary_10_1109_TNNLS_2023_3241207 crossref_primary_10_1109_JIOT_2022_3189407 crossref_primary_10_1007_s11766_021_4411_4 crossref_primary_10_1049_ell2_13253 crossref_primary_10_1080_00207160_2012_750305 crossref_primary_10_1109_TNNLS_2021_3082950 crossref_primary_10_1049_cit2_12019 crossref_primary_10_1109_TIE_2016_2590379 crossref_primary_10_1016_j_jfranklin_2023_02_019 crossref_primary_10_1016_j_matcom_2014_02_006 crossref_primary_10_1007_s00607_010_0133_9 crossref_primary_10_1109_TAC_2019_2921681 crossref_primary_10_1109_TFUZZ_2023_3339654 crossref_primary_10_1109_TNN_2011_2163318 crossref_primary_10_1016_j_neucom_2018_10_078 crossref_primary_10_1080_01605682_2022_2096501 crossref_primary_10_1016_j_chaos_2021_111063 crossref_primary_10_1016_j_physleta_2013_06_023 crossref_primary_10_1016_j_cam_2017_06_017 crossref_primary_10_1016_j_neucom_2024_128136 crossref_primary_10_1016_j_asoc_2024_111812 crossref_primary_10_1007_s00521_020_05356_x crossref_primary_10_1007_s11063_018_9953_y crossref_primary_10_3390_sym17060932 crossref_primary_10_1016_j_physleta_2009_07_045 crossref_primary_10_1109_TNNLS_2015_2435014 crossref_primary_10_1016_j_eswa_2025_128692 crossref_primary_10_1109_TII_2024_3431046 crossref_primary_10_1016_j_apm_2011_11_081 |
| Cites_doi | 10.1109/TNN.2008.2005301 10.1016/j.physleta.2006.08.073 10.1080/03610910601161298 10.1109/TCS.1986.1085953 10.1109/TNN.2005.857946 10.1109/59.736232 10.1109/TCST.2003.821952 10.1016/S0375-9601(02)00424-3 10.1109/TNN.2008.2001183 10.1049/el:19920854 10.1109/TNN.2002.1000129 10.1016/j.amc.2005.01.113 10.1049/el:20081928 10.1016/j.physleta.2005.06.116 10.1109/TSMCB.2004.830347 10.1016/j.physleta.2005.06.071 10.1109/TRA.2002.805651 10.1016/j.cam.2007.08.012 10.1109/TNN.2002.1031938 |
| ContentType | Journal Article |
| Copyright | 2009 Elsevier B.V. |
| Copyright_xml | – notice: 2009 Elsevier B.V. |
| DBID | AAYXX CITATION 7QQ 7U5 8FD JG9 L7M |
| DOI | 10.1016/j.physleta.2009.03.011 |
| DatabaseName | CrossRef Ceramic Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Solid State and Superconductivity Abstracts Ceramic Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Materials Research Database Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1873-2429 |
| EndPage | 1643 |
| ExternalDocumentID | 10_1016_j_physleta_2009_03_011 S0375960109003132 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYJJ ABFNM ABLJU ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACKIV ACNCT ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W K-O KOM M38 M41 MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K TN5 WH7 WUQ XJT XOL YYP ZCG ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QQ 7U5 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c375t-92fdd1193d0b2d9f9b6127a80dfdaaa6f962fcd931d1366f924f33d99a8d65363 |
| ISICitedReferencesCount | 172 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000269486700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0375-9601 |
| IngestDate | Mon Sep 29 06:12:06 EDT 2025 Sun Sep 28 01:24:26 EDT 2025 Sat Nov 29 02:57:37 EST 2025 Tue Nov 18 19:37:59 EST 2025 Fri Feb 23 02:27:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Keywords | 05.10.-a Recurrent neural networks Global convergence 41A25 52A41 Gradient-based neural network (GNN) Time-varying Quadratic programming 92B20 |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c375t-92fdd1193d0b2d9f9b6127a80dfdaaa6f962fcd931d1366f924f33d99a8d65363 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 34473816 |
| PQPubID | 23500 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_903644922 proquest_miscellaneous_34473816 crossref_primary_10_1016_j_physleta_2009_03_011 crossref_citationtrail_10_1016_j_physleta_2009_03_011 elsevier_sciencedirect_doi_10_1016_j_physleta_2009_03_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-04-01 |
| PublicationDateYYYYMMDD | 2009-04-01 |
| PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Physics letters. A |
| PublicationYear | 2009 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Jiang, Wang (bib018) 2002; 13 Wang (bib019) 1992; 28 Costantini, Perfetti, Todisco (bib008) 2008; 19 Zhang, Chen (bib020) 2008; 44 Zhang, Wang, Xu (bib003) 2002; 18 Zhang, Leithead (bib005) 2005; 171 Zhang, Wang (bib009) 2002; 13 Zhang, Leithead, Leith, Walshe (bib006) 2008; 220 Zhang, Ge, Lee (bib026) 2004; 34 Cevikalp, Polikar (bib012) 2008; 19 Zhang, Wang (bib011) 2002; 298 Zhang, Yue, Chen, Yi (bib024) 2008; vol. 5263 Zhang, Ge (bib016) 2005; 16 Zhang, Ge (bib017) 2003 Allegretto, Papini (bib013) 2007; 360 Leithead, Zhang (bib004) 2007; 36 Johansen, Fossen, Berge (bib001) 2004; 12 Suemitsu, Nara (bib014) 2005; 344 Yildiz (bib010) 2005; 345 Zhang, Ma, Yi (bib015) 2008 Grudinin (bib002) 1998; 13 Wang, Zhang (bib023) 2004 Mead (bib025) 1989 Boyd, Vandenberghe (bib021) 2004 Hartman (bib028) 1982 Tank, Hopfield (bib007) 1986; 33 Zhang (bib027) 2007 Nocedal, Wright (bib022) 1999 Zhang (10.1016/j.physleta.2009.03.011_bib018) 2002; 13 Zhang (10.1016/j.physleta.2009.03.011_bib005) 2005; 171 Johansen (10.1016/j.physleta.2009.03.011_bib001) 2004; 12 Yildiz (10.1016/j.physleta.2009.03.011_bib010) 2005; 345 Wang (10.1016/j.physleta.2009.03.011_bib019) 1992; 28 Cevikalp (10.1016/j.physleta.2009.03.011_bib012) 2008; 19 Zhang (10.1016/j.physleta.2009.03.011_bib015) 2008 Zhang (10.1016/j.physleta.2009.03.011_bib006) 2008; 220 Mead (10.1016/j.physleta.2009.03.011_bib025) 1989 Zhang (10.1016/j.physleta.2009.03.011_bib003) 2002; 18 Zhang (10.1016/j.physleta.2009.03.011_bib027) 2007 Zhang (10.1016/j.physleta.2009.03.011_bib017) 2003 Costantini (10.1016/j.physleta.2009.03.011_bib008) 2008; 19 Boyd (10.1016/j.physleta.2009.03.011_bib021) 2004 Zhang (10.1016/j.physleta.2009.03.011_bib024) 2008; vol. 5263 Tank (10.1016/j.physleta.2009.03.011_bib007) 1986; 33 Zhang (10.1016/j.physleta.2009.03.011_bib020) 2008; 44 Suemitsu (10.1016/j.physleta.2009.03.011_bib014) 2005; 344 Nocedal (10.1016/j.physleta.2009.03.011_bib022) 1999 Zhang (10.1016/j.physleta.2009.03.011_bib009) 2002; 13 Hartman (10.1016/j.physleta.2009.03.011_bib028) 1982 Grudinin (10.1016/j.physleta.2009.03.011_bib002) 1998; 13 Leithead (10.1016/j.physleta.2009.03.011_bib004) 2007; 36 Zhang (10.1016/j.physleta.2009.03.011_bib011) 2002; 298 Allegretto (10.1016/j.physleta.2009.03.011_bib013) 2007; 360 Zhang (10.1016/j.physleta.2009.03.011_bib016) 2005; 16 Wang (10.1016/j.physleta.2009.03.011_bib023) 2004 Zhang (10.1016/j.physleta.2009.03.011_bib026) 2004; 34 |
| References_xml | – volume: 360 start-page: 669 year: 2007 ident: bib013 publication-title: Phys. Lett. A – volume: 33 start-page: 533 year: 1986 ident: bib007 publication-title: IEEE Trans. Circuits Syst. – volume: 19 start-page: 1804 year: 2008 ident: bib008 publication-title: IEEE Trans. Neural Networks – volume: 12 start-page: 211 year: 2004 ident: bib001 publication-title: IEEE Trans. Control Syst. Tech. – start-page: 6169 year: 2003 ident: bib017 article-title: A general recurrent neural network model for time-varying matrix inversion publication-title: Proceedings of the 42nd IEEE Conference on Decision and Control – year: 2004 ident: bib023 article-title: Recurrent neural networks for real-time computation of inverse kinematics of redundant manipulators publication-title: Machine Intelligence Quo Vadis? – volume: 13 start-page: 1219 year: 1998 ident: bib002 publication-title: IEEE Trans. Power Syst. – volume: 298 start-page: 271 year: 2002 ident: bib011 publication-title: Phys. Lett. A – volume: 345 start-page: 69 year: 2005 ident: bib010 publication-title: Phys. Lett. A – start-page: 1 year: 2008 ident: bib015 article-title: The link between Newton iteration for matrix inversion and Zhang neural network (ZNN) publication-title: Proceedings of IEEE International Conference on Industrial Electronics – volume: 36 start-page: 367 year: 2007 ident: bib004 publication-title: Commun. Stat. Simul. Comput. – volume: 344 start-page: 220 year: 2005 ident: bib014 publication-title: Phys. Lett. A – year: 1982 ident: bib028 article-title: Ordinary Differential Equations – volume: 19 start-page: 1832 year: 2008 ident: bib012 publication-title: IEEE Trans. Neural Networks – volume: 13 start-page: 1053 year: 2002 ident: bib018 publication-title: IEEE Trans. Neural Networks – volume: 16 start-page: 1477 year: 2005 ident: bib016 publication-title: IEEE Trans. Neural Networks – year: 2004 ident: bib021 article-title: Convex Optimization – year: 1999 ident: bib022 article-title: Numerical Optimization – volume: 44 start-page: 145 year: 2008 ident: bib020 publication-title: Electron. Lett. – year: 2007 ident: bib027 article-title: Dual neural networks: Design, analysis, and application to redundant robotics publication-title: Progress in Neurocomputing Research – volume: vol. 5263 start-page: 127 year: 2008 ident: bib024 article-title: MATLAB simulation and comparison of Zhang neural network and gradient neural network for time-varying Lyapunov equation solving, part I publication-title: Lecture Notes in Computer Science – volume: 28 start-page: 1345 year: 1992 ident: bib019 publication-title: Electron. Lett. – volume: 171 start-page: 1264 year: 2005 ident: bib005 publication-title: Appl. Math. Comput. – volume: 13 start-page: 633 year: 2002 ident: bib009 publication-title: IEEE Trans. Neural Networks – year: 1989 ident: bib025 article-title: Analog VLSI and Neural Systems – volume: 18 start-page: 923 year: 2002 ident: bib003 publication-title: IEEE Trans. Robot. Automat. – volume: 220 start-page: 198 year: 2008 ident: bib006 publication-title: J. Comput. Appl. Math. – volume: 34 start-page: 2126 year: 2004 ident: bib026 publication-title: IEEE Trans. Syst. Man Cybern. II – volume: 19 start-page: 1832 issue: 10 year: 2008 ident: 10.1016/j.physleta.2009.03.011_bib012 publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2008.2005301 – volume: 360 start-page: 669 issue: 6 year: 2007 ident: 10.1016/j.physleta.2009.03.011_bib013 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2006.08.073 – start-page: 1 year: 2008 ident: 10.1016/j.physleta.2009.03.011_bib015 article-title: The link between Newton iteration for matrix inversion and Zhang neural network (ZNN) – volume: 36 start-page: 367 year: 2007 ident: 10.1016/j.physleta.2009.03.011_bib004 publication-title: Commun. Stat. Simul. Comput. doi: 10.1080/03610910601161298 – volume: 33 start-page: 533 issue: 5 year: 1986 ident: 10.1016/j.physleta.2009.03.011_bib007 publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/TCS.1986.1085953 – volume: 16 start-page: 1477 issue: 6 year: 2005 ident: 10.1016/j.physleta.2009.03.011_bib016 publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2005.857946 – volume: 13 start-page: 1219 issue: 4 year: 1998 ident: 10.1016/j.physleta.2009.03.011_bib002 publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.736232 – volume: 12 start-page: 211 issue: 1 year: 2004 ident: 10.1016/j.physleta.2009.03.011_bib001 publication-title: IEEE Trans. Control Syst. Tech. doi: 10.1109/TCST.2003.821952 – year: 2004 ident: 10.1016/j.physleta.2009.03.011_bib021 – volume: 298 start-page: 271 year: 2002 ident: 10.1016/j.physleta.2009.03.011_bib011 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(02)00424-3 – volume: 19 start-page: 1804 issue: 10 year: 2008 ident: 10.1016/j.physleta.2009.03.011_bib008 publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2008.2001183 – start-page: 6169 year: 2003 ident: 10.1016/j.physleta.2009.03.011_bib017 article-title: A general recurrent neural network model for time-varying matrix inversion – volume: 28 start-page: 1345 issue: 14 year: 1992 ident: 10.1016/j.physleta.2009.03.011_bib019 publication-title: Electron. Lett. doi: 10.1049/el:19920854 – year: 1989 ident: 10.1016/j.physleta.2009.03.011_bib025 – volume: 13 start-page: 633 issue: 3 year: 2002 ident: 10.1016/j.physleta.2009.03.011_bib009 publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2002.1000129 – volume: vol. 5263 start-page: 127 year: 2008 ident: 10.1016/j.physleta.2009.03.011_bib024 article-title: MATLAB simulation and comparison of Zhang neural network and gradient neural network for time-varying Lyapunov equation solving, part I – volume: 171 start-page: 1264 issue: 2 year: 2005 ident: 10.1016/j.physleta.2009.03.011_bib005 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.01.113 – year: 1999 ident: 10.1016/j.physleta.2009.03.011_bib022 – volume: 44 start-page: 145 issue: 2 year: 2008 ident: 10.1016/j.physleta.2009.03.011_bib020 publication-title: Electron. Lett. doi: 10.1049/el:20081928 – year: 2007 ident: 10.1016/j.physleta.2009.03.011_bib027 article-title: Dual neural networks: Design, analysis, and application to redundant robotics – volume: 345 start-page: 69 issue: 1–3 year: 2005 ident: 10.1016/j.physleta.2009.03.011_bib010 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.06.116 – volume: 34 start-page: 2126 issue: 5 year: 2004 ident: 10.1016/j.physleta.2009.03.011_bib026 publication-title: IEEE Trans. Syst. Man Cybern. II doi: 10.1109/TSMCB.2004.830347 – volume: 344 start-page: 220 issue: 2–4 year: 2005 ident: 10.1016/j.physleta.2009.03.011_bib014 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.06.071 – year: 2004 ident: 10.1016/j.physleta.2009.03.011_bib023 article-title: Recurrent neural networks for real-time computation of inverse kinematics of redundant manipulators – volume: 18 start-page: 923 issue: 6 year: 2002 ident: 10.1016/j.physleta.2009.03.011_bib003 publication-title: IEEE Trans. Robot. Automat. doi: 10.1109/TRA.2002.805651 – year: 1982 ident: 10.1016/j.physleta.2009.03.011_bib028 – volume: 220 start-page: 198 issue: 1–2 year: 2008 ident: 10.1016/j.physleta.2009.03.011_bib006 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.08.012 – volume: 13 start-page: 1053 issue: 5 year: 2002 ident: 10.1016/j.physleta.2009.03.011_bib018 publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2002.1031938 |
| SSID | ssj0001609 |
| Score | 2.3840117 |
| Snippet | In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1639 |
| SubjectTerms | Global convergence Gradient-based neural network (GNN) Quadratic programming Recurrent neural networks Time-varying |
| Title | Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints |
| URI | https://dx.doi.org/10.1016/j.physleta.2009.03.011 https://www.proquest.com/docview/34473816 https://www.proquest.com/docview/903644922 |
| Volume | 373 |
| WOSCitedRecordID | wos000269486700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2429 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001609 issn: 0375-9601 databaseCode: AIEXJ dateStart: 19950102 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9owELYo20q9VH2qbF8-VL0g0yQOSXxcVazaCtEe2IqeLBPb0q5ooAQQ-wP2f3f8YsNqV7SHXiIIsZP4-xiPx_NA6D1oxIVQqSZ9JjRJlYrINE5LIoo81TJWibLpGH4M89GomEzY91ZrE2JhNrO8qortli3-K9RwDsA2obP_APeuUzgBnwF0OALscPwr4K0JuGvyVMLoV87L2zoTuqQY3XB36x1w_kuRjVheutDbaqO2JsxSLm0eV--71a3XU2OtsWpqs4HpTiyJcoGZl6aD2paccNmhgs5rnUzLujuzkUN179p8urNW_1xXcz-FGucg62FgftyzSbCGK4uPxcr7BNZGcVPOUlezJBAKFq-sITlBL2SNWRhWcfRWCe-MDRc9Y_iB5xY-5SjtRV5o76XUHn3jp2fDIR8PJuMPi9_EVBszu_K-9Mo9dJTAgilqo6OTL4PJ190cHmfOOSi8RyO2_PZb36XW3JjgrdYyfowe-eUGPnE0eYJaqnqKHnhEnqEriwB2ZMGeLBjIgh1ZcCALnmvcxB47suAdWbAnC_Zkwav5foMbZMENsjxHZ6eD8afPxBfmICUMyIqwREsZg-ovo2kimWZT0JNzUURSSyFEplmW6FIyGsuYZvA1STWlkjFRyKxPM_oCtYFW6iXCWuosjY1irKM0zuUUrstFmheaplEuRAf1w7jy0metNw8348E98YIHPExJVcYjygGPDvq4a7dweVsOtmABNu61T6dVcqDewbbvAs4cxLPZcxOVmq9rbhJqmr35DsJ3XMGMJ0DKkuT4YCev0MPrf9tr1F4t1-oNul9uVuf18q3n8B-dKMaf |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zhang+neural+network+for+online+solution+of+time-varying+convex+quadratic+program+subject+to+time-varying+linear-equality+constraints&rft.jtitle=Physics+letters.+A&rft.au=Zhang%2C+Yunong&rft.au=Li%2C+Zhan&rft.date=2009-04-01&rft.issn=0375-9601&rft.volume=373&rft.issue=18-19&rft.spage=1639&rft.epage=1643&rft_id=info:doi/10.1016%2Fj.physleta.2009.03.011&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon |