Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints

In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventiona...

Full description

Saved in:
Bibliographic Details
Published in:Physics letters. A Vol. 373; no. 18; pp. 1639 - 1643
Main Authors: Zhang, Yunong, Li, Zhan
Format: Journal Article
Language:English
Published: Elsevier B.V 01.04.2009
Subjects:
ISSN:0375-9601, 1873-2429
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.
AbstractList In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.
Author Li, Zhan
Zhang, Yunong
Author_xml – sequence: 1
  givenname: Yunong
  surname: Zhang
  fullname: Zhang, Yunong
  email: zhynong@mail.sysu.edu.cn, ynzhang@ieee.org
– sequence: 2
  givenname: Zhan
  surname: Li
  fullname: Li, Zhan
  email: lizhan@mail2.sysu.edu.cn
BookMark eNqFkc1OWzEQha0KpAboK1Retat765-LE0ssqFChlZC6gU03lmOPwaljB9s3NA_Ae9dXaRewgNVopPMdzZxzhA5iioDQR0p6Sqj4suo397sSoOqeESJ7wntC6Ts0o4s579jA5AGaET4_7aQg9D06KmVFSCOJnKGnX_c63uEIY9ahjfqY8m_sUsYpBh8BlxTG6lPEyeHq19Btdd75hpgUt_AHP4zaZl29wZuc7rJe4zIuV2Aqruk5MNnp3EEjgq-7yaDUrH2s5QQdOh0KfPg3j9Ht5bebi-_d9c-rHxdfrzvTzq-dZM5aSiW3ZMmsdHIpKJvrBbHOaq2Fk4I5YyWnlnLRVjY4zq2UemHFKRf8GH3e-7ZbH0YoVa19MRCCjpDGoiThYhgkY0356VUlH4Y5X9DJUuyFJqdSMji1yX7dXlaUqKkftVL_-1FTP4pw1fpp4NkL0Piqp6inUMLb-Pkeh5bX1kNWxXiIBqzPLX1lk3_L4i9oTbeZ
CitedBy_id crossref_primary_10_1016_j_neucom_2019_04_054
crossref_primary_10_1109_TCYB_2021_3051261
crossref_primary_10_1016_j_eswa_2024_124546
crossref_primary_10_1016_j_neucom_2021_01_015
crossref_primary_10_1016_j_cam_2021_113824
crossref_primary_10_1109_TII_2021_3099819
crossref_primary_10_1002_rnc_8013
crossref_primary_10_1007_s11071_025_11075_6
crossref_primary_10_1016_j_neunet_2023_11_058
crossref_primary_10_1016_j_robot_2018_09_003
crossref_primary_10_1016_j_neucom_2022_03_010
crossref_primary_10_1080_00207721_2024_2425952
crossref_primary_10_1016_j_conengprac_2013_06_001
crossref_primary_10_1016_j_eswa_2010_04_007
crossref_primary_10_1007_s11075_010_9410_0
crossref_primary_10_1109_TII_2019_2899428
crossref_primary_10_1109_ACCESS_2022_3226253
crossref_primary_10_1016_j_amc_2011_04_085
crossref_primary_10_1109_TNNLS_2021_3138900
crossref_primary_10_1016_j_jfranklin_2023_09_009
crossref_primary_10_1016_j_matcom_2025_01_024
crossref_primary_10_1080_14697688_2012_691175
crossref_primary_10_1109_TNNLS_2019_2944992
crossref_primary_10_1016_j_jfranklin_2024_106898
crossref_primary_10_1016_j_neucom_2021_05_096
crossref_primary_10_1109_TII_2024_3476530
crossref_primary_10_1016_j_neucom_2022_08_066
crossref_primary_10_3390_math12132090
crossref_primary_10_1186_s13662_019_2406_8
crossref_primary_10_1016_j_mbs_2015_11_009
crossref_primary_10_1109_ACCESS_2018_2878856
crossref_primary_10_1109_TAC_2018_2810039
crossref_primary_10_1007_s00521_019_04639_2
crossref_primary_10_1109_TETC_2021_3057395
crossref_primary_10_1016_j_jfranklin_2024_107469
crossref_primary_10_1016_j_neucom_2012_07_043
crossref_primary_10_1109_TII_2023_3241683
crossref_primary_10_1007_s13370_025_01268_y
crossref_primary_10_1109_TSMCB_2012_2210038
crossref_primary_10_1109_TSMC_2024_3514919
crossref_primary_10_1016_j_ipl_2010_09_013
crossref_primary_10_1016_j_eswa_2021_116272
crossref_primary_10_1016_j_ins_2022_11_157
crossref_primary_10_1109_TCSI_2022_3153560
crossref_primary_10_1016_j_neucom_2018_11_071
crossref_primary_10_1016_j_mbs_2016_07_011
crossref_primary_10_26599_TST_2024_9010127
crossref_primary_10_1016_j_mex_2024_102895
crossref_primary_10_1007_s11045_012_0189_0
crossref_primary_10_1007_s40435_023_01367_3
crossref_primary_10_1109_ACCESS_2019_2941961
crossref_primary_10_1109_MCI_2012_2215139
crossref_primary_10_1007_s00521_011_0692_5
crossref_primary_10_1109_TMECH_2018_2799724
crossref_primary_10_1016_j_neucom_2018_07_067
crossref_primary_10_1109_TFUZZ_2020_2981001
crossref_primary_10_1016_j_physleta_2017_03_025
crossref_primary_10_1007_s00521_014_1744_4
crossref_primary_10_1016_j_mbs_2019_108215
crossref_primary_10_1007_s10462_024_11026_4
crossref_primary_10_1007_s00500_013_1124_5
crossref_primary_10_1109_TNNLS_2025_3526620
crossref_primary_10_1109_TNNLS_2020_3041364
crossref_primary_10_1016_j_neucom_2024_129156
crossref_primary_10_1016_j_neucom_2011_02_007
crossref_primary_10_1109_TNNLS_2020_2986275
crossref_primary_10_1109_TNNLS_2018_2885042
crossref_primary_10_1016_j_neucom_2022_05_089
crossref_primary_10_1109_TCSI_2012_2188944
crossref_primary_10_1016_j_physa_2019_123846
crossref_primary_10_1016_j_asoc_2015_11_023
crossref_primary_10_1016_j_neucom_2017_06_030
crossref_primary_10_1016_j_tcs_2019_07_027
crossref_primary_10_3390_electronics11101636
crossref_primary_10_1109_TIE_2021_3082060
crossref_primary_10_1109_TII_2022_3175962
crossref_primary_10_1016_j_neucom_2019_03_053
crossref_primary_10_1049_cit2_12161
crossref_primary_10_1016_j_neucom_2019_01_024
crossref_primary_10_3390_axioms13080540
crossref_primary_10_1016_j_matcom_2021_03_014
crossref_primary_10_1007_s00521_012_0842_4
crossref_primary_10_1109_TNNLS_2019_2891252
crossref_primary_10_1007_s12559_017_9510_4
crossref_primary_10_1016_j_neucom_2022_12_008
crossref_primary_10_1016_j_physleta_2012_04_008
crossref_primary_10_1109_TNNLS_2020_3009201
crossref_primary_10_1016_j_tcs_2023_114328
crossref_primary_10_1007_s00521_023_09264_8
crossref_primary_10_1007_s00521_010_0445_x
crossref_primary_10_1007_s10044_017_0608_9
crossref_primary_10_1016_j_neucom_2020_06_051
crossref_primary_10_1016_j_neucom_2020_10_110
crossref_primary_10_1007_s11063_021_10726_0
crossref_primary_10_1016_j_chaos_2018_06_012
crossref_primary_10_1007_s00521_017_3010_z
crossref_primary_10_1007_s11075_012_9690_7
crossref_primary_10_1109_TNNLS_2023_3241207
crossref_primary_10_1109_JIOT_2022_3189407
crossref_primary_10_1007_s11766_021_4411_4
crossref_primary_10_1049_ell2_13253
crossref_primary_10_1080_00207160_2012_750305
crossref_primary_10_1109_TNNLS_2021_3082950
crossref_primary_10_1049_cit2_12019
crossref_primary_10_1109_TIE_2016_2590379
crossref_primary_10_1016_j_jfranklin_2023_02_019
crossref_primary_10_1016_j_matcom_2014_02_006
crossref_primary_10_1007_s00607_010_0133_9
crossref_primary_10_1109_TAC_2019_2921681
crossref_primary_10_1109_TFUZZ_2023_3339654
crossref_primary_10_1109_TNN_2011_2163318
crossref_primary_10_1016_j_neucom_2018_10_078
crossref_primary_10_1080_01605682_2022_2096501
crossref_primary_10_1016_j_chaos_2021_111063
crossref_primary_10_1016_j_physleta_2013_06_023
crossref_primary_10_1016_j_cam_2017_06_017
crossref_primary_10_1016_j_neucom_2024_128136
crossref_primary_10_1016_j_asoc_2024_111812
crossref_primary_10_1007_s00521_020_05356_x
crossref_primary_10_1007_s11063_018_9953_y
crossref_primary_10_3390_sym17060932
crossref_primary_10_1016_j_physleta_2009_07_045
crossref_primary_10_1109_TNNLS_2015_2435014
crossref_primary_10_1016_j_eswa_2025_128692
crossref_primary_10_1109_TII_2024_3431046
crossref_primary_10_1016_j_apm_2011_11_081
Cites_doi 10.1109/TNN.2008.2005301
10.1016/j.physleta.2006.08.073
10.1080/03610910601161298
10.1109/TCS.1986.1085953
10.1109/TNN.2005.857946
10.1109/59.736232
10.1109/TCST.2003.821952
10.1016/S0375-9601(02)00424-3
10.1109/TNN.2008.2001183
10.1049/el:19920854
10.1109/TNN.2002.1000129
10.1016/j.amc.2005.01.113
10.1049/el:20081928
10.1016/j.physleta.2005.06.116
10.1109/TSMCB.2004.830347
10.1016/j.physleta.2005.06.071
10.1109/TRA.2002.805651
10.1016/j.cam.2007.08.012
10.1109/TNN.2002.1031938
ContentType Journal Article
Copyright 2009 Elsevier B.V.
Copyright_xml – notice: 2009 Elsevier B.V.
DBID AAYXX
CITATION
7QQ
7U5
8FD
JG9
L7M
DOI 10.1016/j.physleta.2009.03.011
DatabaseName CrossRef
Ceramic Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2429
EndPage 1643
ExternalDocumentID 10_1016_j_physleta_2009_03_011
S0375960109003132
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABFNM
ABLJU
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACKIV
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
M38
M41
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
TN5
WH7
WUQ
XJT
XOL
YYP
ZCG
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QQ
7U5
8FD
JG9
L7M
ID FETCH-LOGICAL-c375t-92fdd1193d0b2d9f9b6127a80dfdaaa6f962fcd931d1366f924f33d99a8d65363
ISICitedReferencesCount 172
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000269486700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0375-9601
IngestDate Mon Sep 29 06:12:06 EDT 2025
Sun Sep 28 01:24:26 EDT 2025
Sat Nov 29 02:57:37 EST 2025
Tue Nov 18 19:37:59 EST 2025
Fri Feb 23 02:27:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords 05.10.-a
Recurrent neural networks
Global convergence
41A25
52A41
Gradient-based neural network (GNN)
Time-varying
Quadratic programming
92B20
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c375t-92fdd1193d0b2d9f9b6127a80dfdaaa6f962fcd931d1366f924f33d99a8d65363
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34473816
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_903644922
proquest_miscellaneous_34473816
crossref_primary_10_1016_j_physleta_2009_03_011
crossref_citationtrail_10_1016_j_physleta_2009_03_011
elsevier_sciencedirect_doi_10_1016_j_physleta_2009_03_011
PublicationCentury 2000
PublicationDate 2009-04-01
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-01
  day: 01
PublicationDecade 2000
PublicationTitle Physics letters. A
PublicationYear 2009
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Jiang, Wang (bib018) 2002; 13
Wang (bib019) 1992; 28
Costantini, Perfetti, Todisco (bib008) 2008; 19
Zhang, Chen (bib020) 2008; 44
Zhang, Wang, Xu (bib003) 2002; 18
Zhang, Leithead (bib005) 2005; 171
Zhang, Wang (bib009) 2002; 13
Zhang, Leithead, Leith, Walshe (bib006) 2008; 220
Zhang, Ge, Lee (bib026) 2004; 34
Cevikalp, Polikar (bib012) 2008; 19
Zhang, Wang (bib011) 2002; 298
Zhang, Yue, Chen, Yi (bib024) 2008; vol. 5263
Zhang, Ge (bib016) 2005; 16
Zhang, Ge (bib017) 2003
Allegretto, Papini (bib013) 2007; 360
Leithead, Zhang (bib004) 2007; 36
Johansen, Fossen, Berge (bib001) 2004; 12
Suemitsu, Nara (bib014) 2005; 344
Yildiz (bib010) 2005; 345
Zhang, Ma, Yi (bib015) 2008
Grudinin (bib002) 1998; 13
Wang, Zhang (bib023) 2004
Mead (bib025) 1989
Boyd, Vandenberghe (bib021) 2004
Hartman (bib028) 1982
Tank, Hopfield (bib007) 1986; 33
Zhang (bib027) 2007
Nocedal, Wright (bib022) 1999
Zhang (10.1016/j.physleta.2009.03.011_bib018) 2002; 13
Zhang (10.1016/j.physleta.2009.03.011_bib005) 2005; 171
Johansen (10.1016/j.physleta.2009.03.011_bib001) 2004; 12
Yildiz (10.1016/j.physleta.2009.03.011_bib010) 2005; 345
Wang (10.1016/j.physleta.2009.03.011_bib019) 1992; 28
Cevikalp (10.1016/j.physleta.2009.03.011_bib012) 2008; 19
Zhang (10.1016/j.physleta.2009.03.011_bib015) 2008
Zhang (10.1016/j.physleta.2009.03.011_bib006) 2008; 220
Mead (10.1016/j.physleta.2009.03.011_bib025) 1989
Zhang (10.1016/j.physleta.2009.03.011_bib003) 2002; 18
Zhang (10.1016/j.physleta.2009.03.011_bib027) 2007
Zhang (10.1016/j.physleta.2009.03.011_bib017) 2003
Costantini (10.1016/j.physleta.2009.03.011_bib008) 2008; 19
Boyd (10.1016/j.physleta.2009.03.011_bib021) 2004
Zhang (10.1016/j.physleta.2009.03.011_bib024) 2008; vol. 5263
Tank (10.1016/j.physleta.2009.03.011_bib007) 1986; 33
Zhang (10.1016/j.physleta.2009.03.011_bib020) 2008; 44
Suemitsu (10.1016/j.physleta.2009.03.011_bib014) 2005; 344
Nocedal (10.1016/j.physleta.2009.03.011_bib022) 1999
Zhang (10.1016/j.physleta.2009.03.011_bib009) 2002; 13
Hartman (10.1016/j.physleta.2009.03.011_bib028) 1982
Grudinin (10.1016/j.physleta.2009.03.011_bib002) 1998; 13
Leithead (10.1016/j.physleta.2009.03.011_bib004) 2007; 36
Zhang (10.1016/j.physleta.2009.03.011_bib011) 2002; 298
Allegretto (10.1016/j.physleta.2009.03.011_bib013) 2007; 360
Zhang (10.1016/j.physleta.2009.03.011_bib016) 2005; 16
Wang (10.1016/j.physleta.2009.03.011_bib023) 2004
Zhang (10.1016/j.physleta.2009.03.011_bib026) 2004; 34
References_xml – volume: 360
  start-page: 669
  year: 2007
  ident: bib013
  publication-title: Phys. Lett. A
– volume: 33
  start-page: 533
  year: 1986
  ident: bib007
  publication-title: IEEE Trans. Circuits Syst.
– volume: 19
  start-page: 1804
  year: 2008
  ident: bib008
  publication-title: IEEE Trans. Neural Networks
– volume: 12
  start-page: 211
  year: 2004
  ident: bib001
  publication-title: IEEE Trans. Control Syst. Tech.
– start-page: 6169
  year: 2003
  ident: bib017
  article-title: A general recurrent neural network model for time-varying matrix inversion
  publication-title: Proceedings of the 42nd IEEE Conference on Decision and Control
– year: 2004
  ident: bib023
  article-title: Recurrent neural networks for real-time computation of inverse kinematics of redundant manipulators
  publication-title: Machine Intelligence Quo Vadis?
– volume: 13
  start-page: 1219
  year: 1998
  ident: bib002
  publication-title: IEEE Trans. Power Syst.
– volume: 298
  start-page: 271
  year: 2002
  ident: bib011
  publication-title: Phys. Lett. A
– volume: 345
  start-page: 69
  year: 2005
  ident: bib010
  publication-title: Phys. Lett. A
– start-page: 1
  year: 2008
  ident: bib015
  article-title: The link between Newton iteration for matrix inversion and Zhang neural network (ZNN)
  publication-title: Proceedings of IEEE International Conference on Industrial Electronics
– volume: 36
  start-page: 367
  year: 2007
  ident: bib004
  publication-title: Commun. Stat. Simul. Comput.
– volume: 344
  start-page: 220
  year: 2005
  ident: bib014
  publication-title: Phys. Lett. A
– year: 1982
  ident: bib028
  article-title: Ordinary Differential Equations
– volume: 19
  start-page: 1832
  year: 2008
  ident: bib012
  publication-title: IEEE Trans. Neural Networks
– volume: 13
  start-page: 1053
  year: 2002
  ident: bib018
  publication-title: IEEE Trans. Neural Networks
– volume: 16
  start-page: 1477
  year: 2005
  ident: bib016
  publication-title: IEEE Trans. Neural Networks
– year: 2004
  ident: bib021
  article-title: Convex Optimization
– year: 1999
  ident: bib022
  article-title: Numerical Optimization
– volume: 44
  start-page: 145
  year: 2008
  ident: bib020
  publication-title: Electron. Lett.
– year: 2007
  ident: bib027
  article-title: Dual neural networks: Design, analysis, and application to redundant robotics
  publication-title: Progress in Neurocomputing Research
– volume: vol. 5263
  start-page: 127
  year: 2008
  ident: bib024
  article-title: MATLAB simulation and comparison of Zhang neural network and gradient neural network for time-varying Lyapunov equation solving, part I
  publication-title: Lecture Notes in Computer Science
– volume: 28
  start-page: 1345
  year: 1992
  ident: bib019
  publication-title: Electron. Lett.
– volume: 171
  start-page: 1264
  year: 2005
  ident: bib005
  publication-title: Appl. Math. Comput.
– volume: 13
  start-page: 633
  year: 2002
  ident: bib009
  publication-title: IEEE Trans. Neural Networks
– year: 1989
  ident: bib025
  article-title: Analog VLSI and Neural Systems
– volume: 18
  start-page: 923
  year: 2002
  ident: bib003
  publication-title: IEEE Trans. Robot. Automat.
– volume: 220
  start-page: 198
  year: 2008
  ident: bib006
  publication-title: J. Comput. Appl. Math.
– volume: 34
  start-page: 2126
  year: 2004
  ident: bib026
  publication-title: IEEE Trans. Syst. Man Cybern. II
– volume: 19
  start-page: 1832
  issue: 10
  year: 2008
  ident: 10.1016/j.physleta.2009.03.011_bib012
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2008.2005301
– volume: 360
  start-page: 669
  issue: 6
  year: 2007
  ident: 10.1016/j.physleta.2009.03.011_bib013
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2006.08.073
– start-page: 1
  year: 2008
  ident: 10.1016/j.physleta.2009.03.011_bib015
  article-title: The link between Newton iteration for matrix inversion and Zhang neural network (ZNN)
– volume: 36
  start-page: 367
  year: 2007
  ident: 10.1016/j.physleta.2009.03.011_bib004
  publication-title: Commun. Stat. Simul. Comput.
  doi: 10.1080/03610910601161298
– volume: 33
  start-page: 533
  issue: 5
  year: 1986
  ident: 10.1016/j.physleta.2009.03.011_bib007
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/TCS.1986.1085953
– volume: 16
  start-page: 1477
  issue: 6
  year: 2005
  ident: 10.1016/j.physleta.2009.03.011_bib016
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2005.857946
– volume: 13
  start-page: 1219
  issue: 4
  year: 1998
  ident: 10.1016/j.physleta.2009.03.011_bib002
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.736232
– volume: 12
  start-page: 211
  issue: 1
  year: 2004
  ident: 10.1016/j.physleta.2009.03.011_bib001
  publication-title: IEEE Trans. Control Syst. Tech.
  doi: 10.1109/TCST.2003.821952
– year: 2004
  ident: 10.1016/j.physleta.2009.03.011_bib021
– volume: 298
  start-page: 271
  year: 2002
  ident: 10.1016/j.physleta.2009.03.011_bib011
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)00424-3
– volume: 19
  start-page: 1804
  issue: 10
  year: 2008
  ident: 10.1016/j.physleta.2009.03.011_bib008
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2008.2001183
– start-page: 6169
  year: 2003
  ident: 10.1016/j.physleta.2009.03.011_bib017
  article-title: A general recurrent neural network model for time-varying matrix inversion
– volume: 28
  start-page: 1345
  issue: 14
  year: 1992
  ident: 10.1016/j.physleta.2009.03.011_bib019
  publication-title: Electron. Lett.
  doi: 10.1049/el:19920854
– year: 1989
  ident: 10.1016/j.physleta.2009.03.011_bib025
– volume: 13
  start-page: 633
  issue: 3
  year: 2002
  ident: 10.1016/j.physleta.2009.03.011_bib009
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2002.1000129
– volume: vol. 5263
  start-page: 127
  year: 2008
  ident: 10.1016/j.physleta.2009.03.011_bib024
  article-title: MATLAB simulation and comparison of Zhang neural network and gradient neural network for time-varying Lyapunov equation solving, part I
– volume: 171
  start-page: 1264
  issue: 2
  year: 2005
  ident: 10.1016/j.physleta.2009.03.011_bib005
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.01.113
– year: 1999
  ident: 10.1016/j.physleta.2009.03.011_bib022
– volume: 44
  start-page: 145
  issue: 2
  year: 2008
  ident: 10.1016/j.physleta.2009.03.011_bib020
  publication-title: Electron. Lett.
  doi: 10.1049/el:20081928
– year: 2007
  ident: 10.1016/j.physleta.2009.03.011_bib027
  article-title: Dual neural networks: Design, analysis, and application to redundant robotics
– volume: 345
  start-page: 69
  issue: 1–3
  year: 2005
  ident: 10.1016/j.physleta.2009.03.011_bib010
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.06.116
– volume: 34
  start-page: 2126
  issue: 5
  year: 2004
  ident: 10.1016/j.physleta.2009.03.011_bib026
  publication-title: IEEE Trans. Syst. Man Cybern. II
  doi: 10.1109/TSMCB.2004.830347
– volume: 344
  start-page: 220
  issue: 2–4
  year: 2005
  ident: 10.1016/j.physleta.2009.03.011_bib014
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.06.071
– year: 2004
  ident: 10.1016/j.physleta.2009.03.011_bib023
  article-title: Recurrent neural networks for real-time computation of inverse kinematics of redundant manipulators
– volume: 18
  start-page: 923
  issue: 6
  year: 2002
  ident: 10.1016/j.physleta.2009.03.011_bib003
  publication-title: IEEE Trans. Robot. Automat.
  doi: 10.1109/TRA.2002.805651
– year: 1982
  ident: 10.1016/j.physleta.2009.03.011_bib028
– volume: 220
  start-page: 198
  issue: 1–2
  year: 2008
  ident: 10.1016/j.physleta.2009.03.011_bib006
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2007.08.012
– volume: 13
  start-page: 1053
  issue: 5
  year: 2002
  ident: 10.1016/j.physleta.2009.03.011_bib018
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2002.1031938
SSID ssj0001609
Score 2.3840117
Snippet In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1639
SubjectTerms Global convergence
Gradient-based neural network (GNN)
Quadratic programming
Recurrent neural networks
Time-varying
Title Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints
URI https://dx.doi.org/10.1016/j.physleta.2009.03.011
https://www.proquest.com/docview/34473816
https://www.proquest.com/docview/903644922
Volume 373
WOSCitedRecordID wos000269486700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2429
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001609
  issn: 0375-9601
  databaseCode: AIEXJ
  dateStart: 19950102
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9owELYo20q9VH2qbF8-VL0g0yQOSXxcVazaCtEe2IqeLBPb0q5ooAQQ-wP2f3f8YsNqV7SHXiIIsZP4-xiPx_NA6D1oxIVQqSZ9JjRJlYrINE5LIoo81TJWibLpGH4M89GomEzY91ZrE2JhNrO8qortli3-K9RwDsA2obP_APeuUzgBnwF0OALscPwr4K0JuGvyVMLoV87L2zoTuqQY3XB36x1w_kuRjVheutDbaqO2JsxSLm0eV--71a3XU2OtsWpqs4HpTiyJcoGZl6aD2paccNmhgs5rnUzLujuzkUN179p8urNW_1xXcz-FGucg62FgftyzSbCGK4uPxcr7BNZGcVPOUlezJBAKFq-sITlBL2SNWRhWcfRWCe-MDRc9Y_iB5xY-5SjtRV5o76XUHn3jp2fDIR8PJuMPi9_EVBszu_K-9Mo9dJTAgilqo6OTL4PJ190cHmfOOSi8RyO2_PZb36XW3JjgrdYyfowe-eUGPnE0eYJaqnqKHnhEnqEriwB2ZMGeLBjIgh1ZcCALnmvcxB47suAdWbAnC_Zkwav5foMbZMENsjxHZ6eD8afPxBfmICUMyIqwREsZg-ovo2kimWZT0JNzUURSSyFEplmW6FIyGsuYZvA1STWlkjFRyKxPM_oCtYFW6iXCWuosjY1irKM0zuUUrstFmheaplEuRAf1w7jy0metNw8348E98YIHPExJVcYjygGPDvq4a7dweVsOtmABNu61T6dVcqDewbbvAs4cxLPZcxOVmq9rbhJqmr35DsJ3XMGMJ0DKkuT4YCev0MPrf9tr1F4t1-oNul9uVuf18q3n8B-dKMaf
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zhang+neural+network+for+online+solution+of+time-varying+convex+quadratic+program+subject+to+time-varying+linear-equality+constraints&rft.jtitle=Physics+letters.+A&rft.au=Zhang%2C+Yunong&rft.au=Li%2C+Zhan&rft.date=2009-04-01&rft.issn=0375-9601&rft.volume=373&rft.issue=18-19&rft.spage=1639&rft.epage=1643&rft_id=info:doi/10.1016%2Fj.physleta.2009.03.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-9601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-9601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-9601&client=summon