Zhang neural network for online solution of time-varying convex quadratic program subject to time-varying linear-equality constraints

In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventiona...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physics letters. A Ročník 373; číslo 18; s. 1639 - 1643
Hlavní autoři: Zhang, Yunong, Li, Zhan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2009
Témata:
ISSN:0375-9601, 1873-2429
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this Letter, by following Zhang et al.'s method, a recurrent neural network (termed as Zhang neural network, ZNN) is developed and analyzed for solving online the time-varying convex quadratic-programming problem subject to time-varying linear-equality constraints. Different from conventional gradient-based neural networks (GNN), such a ZNN model makes full use of the time-derivative information of time-varying coefficient. The resultant ZNN model is theoretically proved to have global exponential convergence to the time-varying theoretical optimal solution of the investigated time-varying convex quadratic program. Computer-simulation results further substantiate the effectiveness, efficiency and novelty of such ZNN model and method.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0375-9601
1873-2429
DOI:10.1016/j.physleta.2009.03.011