Forward and inverse design of kirigami via supervised autoencoder

Machine learning (ML) methods have recently been used as forward solvers to predict the mechanical properties of composite materials. Here, we use a supervised autoencoder (SAE) to perform the inverse design of graphene kirigami, where predicting the ultimate stress or strain under tensile loading i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review research Ročník 2; číslo 4; s. 042006
Hlavní autoři: Hanakata, Paul Z., Cubuk, Ekin D., Campbell, David K., Park, Harold S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: American Physical Society 12.10.2020
ISSN:2643-1564, 2643-1564
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Machine learning (ML) methods have recently been used as forward solvers to predict the mechanical properties of composite materials. Here, we use a supervised autoencoder (SAE) to perform the inverse design of graphene kirigami, where predicting the ultimate stress or strain under tensile loading is known to be difficult due to nonlinear effects arising from the out-of-plane buckling. Unlike the standard autoencoder, our SAE is able not only to reconstruct cut configurations but also to predict the mechanical properties of graphene kirigami and classify the kirigami with either parallel or orthogonal cuts. By interpolating in the latent space of kirigami structures, the SAE is able to generate designs that mix parallel and orthogonal cuts, despite being trained independently on parallel or orthogonal cuts. Our method allows us to both identify alternate designs and predict, with reasonable accuracy, their mechanical properties, which is crucial for expanding the search space for materials design.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.2.042006