Forward and inverse design of kirigami via supervised autoencoder
Machine learning (ML) methods have recently been used as forward solvers to predict the mechanical properties of composite materials. Here, we use a supervised autoencoder (SAE) to perform the inverse design of graphene kirigami, where predicting the ultimate stress or strain under tensile loading i...
Uloženo v:
| Vydáno v: | Physical review research Ročník 2; číslo 4; s. 042006 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
American Physical Society
12.10.2020
|
| ISSN: | 2643-1564, 2643-1564 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!