A Mixed Coding Scheme of a Particle Swarm Optimization and a Hybrid Genetic Algorithm with Sequential Quadratic Programming for Mixed Integer Nonlinear Programming in Common Chemical Engineering Practice
In this paper, mixed integer nonlinear programming (MINLP) is optimized by PSO_GA-SQP, the mixed coding of a particle swarm optimization (PSO), and a hybrid genetic algorithm and sequential quadratic programming (GA-SQP). The population is separated into two groups: discrete and continuous variables...
Uložené v:
| Vydané v: | Chemical engineering communications Ročník 204; číslo 8; s. 840 - 851 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Philadelphia
Taylor & Francis
03.08.2017
Taylor & Francis Ltd |
| Predmet: | |
| ISSN: | 0098-6445, 1563-5201 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, mixed integer nonlinear programming (MINLP) is optimized by PSO_GA-SQP, the mixed coding of a particle swarm optimization (PSO), and a hybrid genetic algorithm and sequential quadratic programming (GA-SQP). The population is separated into two groups: discrete and continuous variables. The discrete variables are optimized by the adapted PSO, while the continuous variables are optimized by the GA-SQP using the discrete variable information from the adapted PSO. Therefore, the population can be set to a smaller size than usual to obtain a global solution. The proposed PSO_GA-SQP algorithm is verified using various MINLP problems including the designing of retrofit heat exchanger networks. The fitness values of the tested problems are able to reach the global optimum. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0098-6445 1563-5201 |
| DOI: | 10.1080/00986445.2017.1294583 |