Cognitive neurodynamic approaches to adaptive signal processing in wireless sensor networks

In recent years, Wireless Sensor Networks (WSN) have become vital because of their versatility in numerous applications. Nevertheless, the attain problems like inherent noise, and limited node computation capabilities, result in reduced sensor node lifespan as well as enhanced power consumption. To...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cognitive neurodynamics Ročník 19; číslo 1; s. 11
Hlavní autoři: Shanthi, K. G., Kinol, A. Mary Joy, Devi, S. Rukmani, Kannan, K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.12.2025
Springer Nature B.V
Témata:
ISSN:1871-4080, 1871-4099
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In recent years, Wireless Sensor Networks (WSN) have become vital because of their versatility in numerous applications. Nevertheless, the attain problems like inherent noise, and limited node computation capabilities, result in reduced sensor node lifespan as well as enhanced power consumption. To tackle such problems, this study develops a Modified-Distributed Arithmetic-Offset Binary Coding-based Adaptive Finite Impulse Response (MDA-OBC based AFIR) framework. By leveraging Modified Distributed Arithmetic (MDA) which optimizes arithmetic operations by replacing the multipliers with lookup tables (LUT) hence minimizing energy consumption as well as computational complexity. Offset Binary Coding (OBC) enhanced the efficiency of data transmission by minimizing the data representation overhead. In addition to this, the adaptive strategy is incorporated with the Adaptive Finite Impulse Response (AFIR) framework permitting the filters to dynamically adjust to varying signal characteristics, thus offering high noise suppression and low distortion rates. Comprehensive simulations and comparative analysis validate the effectiveness of the proposed MDA-OBC-based AFIR method. The proposed method attained a lower energy consumption of 1.5 J and 130 W power consumption than the traditional implementations, resulting in significant energy efficiency and data transmission in signal preprocessing and noise suppression in WSNs.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1871-4080
1871-4099
DOI:10.1007/s11571-024-10190-1