On Perturbed Discrete Boundary Value Problems
In this paper, we study nonlinear discrete boundary value problems of the form x ( t +1)= A ( t ) x ( t )+ h ( t )+ k f ( t , x ( t ), k ) subject to Bx (0)+ Dx ( J )= u + k g ( x (0), x ( J ), k ) where k is a "small" parameter. Our main concern is the case of resonance, that is, the situ...
Gespeichert in:
| Veröffentlicht in: | Journal of difference equations and applications Jg. 8; H. 5; S. 447 - 466 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis Group
01.05.2002
|
| Schlagworte: | |
| ISSN: | 1023-6198, 1563-5120 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we study nonlinear discrete boundary value problems of the form x ( t +1)= A ( t ) x ( t )+ h ( t )+ k f ( t , x ( t ), k ) subject to Bx (0)+ Dx ( J )= u + k g ( x (0), x ( J ), k ) where k is a "small" parameter. Our main concern is the case of resonance, that is, the situation where the associated linear homogeneous boundary value problem x ( t +1)= A ( t ) x ( t ), Bx (0)+ Dx ( J )=0 admits nontrivial solutions. We establish conditions for the solvability of the nonlinear boundary value problem when k is "small". We also establish qualitative properties of these solutions. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1023-6198 1563-5120 |
| DOI: | 10.1080/10236190290017432 |