A hybrid level-set / embedded boundary method applied to solidification-melt problems
In this paper, we introduce a novel way to represent the interface for two-phase flows with phase change. We combine a level-set method with a Cartesian embedded boundary method and take advantage of both. This is part of an effort to obtain a numerical strategy relying on Cartesian grids allowing t...
Uloženo v:
| Vydáno v: | Journal of computational physics Ročník 474; s. 111829 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.02.2023
Elsevier |
| Témata: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we introduce a novel way to represent the interface for two-phase flows with phase change. We combine a level-set method with a Cartesian embedded boundary method and take advantage of both. This is part of an effort to obtain a numerical strategy relying on Cartesian grids allowing the simulation of complex boundaries with possible change of topology while retaining a high-order representation of the gradients on the interface and the capability of properly applying boundary conditions on the interface. This leads to a two-fluid conservative second-order numerical method. The ability of the method to correctly solve Stefan problems, onset dendrite growth with and without anisotropy is demonstrated through a variety of test cases. Finally, we take advantage of the two-fluid representation to model a Rayleigh–Bénard instability with a melting boundary. |
|---|---|
| ISSN: | 0021-9991 1090-2716 |
| DOI: | 10.1016/j.jcp.2022.111829 |