A computational status update for exact rational mixed integer programming

The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework th...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 197; no. 2; pp. 793 - 812
Main Authors: Eifler, Leon, Gleixner, Ambros
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2023
Springer
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 10.7x over the original framework and 2.9 times as many instances solved within a time limit of two hours.
AbstractList The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 10.7x over the original framework and 2.9 times as many instances solved within a time limit of two hours.
The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 10.7x over the original framework and 2.9 times as many instances solved within a time limit of two hours.
Audience Academic
Author Gleixner, Ambros
Eifler, Leon
Author_xml – sequence: 1
  givenname: Leon
  orcidid: 0000-0003-0245-9344
  surname: Eifler
  fullname: Eifler, Leon
  email: eifler@zib.de
  organization: Zuse Institute Berlin
– sequence: 2
  givenname: Ambros
  orcidid: 0000-0003-0391-5903
  surname: Gleixner
  fullname: Gleixner, Ambros
  organization: Zuse Institute Berlin, HTW Berlin
BookMark eNp9kMtqwzAQRUVJoUnaH-hKP-B0ZL2cZQh9EuimXQtZlo2CbRnJhvTvq9TtposgkC5izgxzVmjR-94idE9gQwDkQyRAQGaQkwyIZNuMX6ElYVRkTDCxQEuAnGdcELhBqxiPAEBoUSzR2w4b3w3TqEfne93imNIU8TRUerS49gHbkzYjDn8FnTvZCrt-tI0NeAi-CbrrXN_coutat9He_b5r9Pn0-LF_yQ7vz6_73SEzVLIx3dQW3ABQYFpQKypelWVpjS7zFGjJqZRbIKI2YMFqoXMOtEyFwHNWVnSNNnPfRrdWub72Y9Amncp2ziQvtUv_O0kFYWl7noB8BkzwMQZbqyG4TocvRUCd9alZn0r61I8-dYaKf5Bxs6Q0zbWXUTqjMc3pkyV19FNI7uIl6htyLYeF
CitedBy_id crossref_primary_10_1287_ijoc_2024_0844
crossref_primary_10_1007_s11241_023_09408_y
crossref_primary_10_1016_j_jtbi_2024_111731
crossref_primary_10_1007_s10107_024_02183_z
crossref_primary_10_1137_23M156046X
crossref_primary_10_1287_ijoc_2022_0171
crossref_primary_10_1007_s12532_024_00262_y
crossref_primary_10_1287_ijoc_2023_0409
crossref_primary_10_1145_3702244
crossref_primary_10_1016_j_ejor_2024_11_018
crossref_primary_10_1287_ijoc_2022_0257
Cites_doi 10.1007/978-3-030-73879-2_12
10.1007/s12532-020-00194-3
10.1287/ijoc.2018.0857
10.1007/978-3-540-79719-7_8
10.1007/s00500-018-3365-9
10.1007/s12532-016-0104-z
10.1145/358438.349318
10.1007/978-3-319-09284-3_31
10.1287/ijoc.1120.0501
10.1007/978-3-540-78800-3_24
10.1287/ijoc.2016.0692
10.1145/2382585.2382589
10.1016/j.orl.2013.08.007
10.1090/mcom/3461
10.1007/s10107-003-0433-3
10.1016/j.orl.2004.04.002
10.1007/s12532-013-0055-6
10.1007/978-3-030-04651-4_46
10.1007/978-3-030-49988-4
10.1007/978-3-319-59250-3_13
10.1016/j.orl.2006.12.010
10.1007/s10107-019-01444-6
10.1287/ijoc.1090.0324
10.1007/978-3-642-38189-8_18
10.1137/1.9780898718027
10.1016/j.scico.2007.08.001
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2023 Springer
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2023 Springer
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10107-021-01749-5
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 812
ExternalDocumentID A736144645
10_1007_s10107_021_01749_5
GrantInformation_xml – fundername: Bundesministerium für Forschung und Technologie
  grantid: 05M14ZAM; 05M20ZBM
  funderid: http://dx.doi.org/10.13039/501100004937
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c374t-c33e85c00304a63e6d5dbbbecab2dbb3b53779016fc0e0ea6a2503b3e60524bd3
IEDL.DBID RSV
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000740163700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Sat Nov 29 10:29:36 EST 2025
Sat Nov 29 03:34:03 EST 2025
Tue Nov 18 21:40:20 EST 2025
Fri Feb 21 02:45:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Mixed integer programming
Symbolic computations
Exact computation
Rational arithmetic
Certificate of correctness
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-c33e85c00304a63e6d5dbbbecab2dbb3b53779016fc0e0ea6a2503b3e60524bd3
ORCID 0000-0003-0245-9344
0000-0003-0391-5903
OpenAccessLink https://link.springer.com/10.1007/s10107-021-01749-5
PageCount 20
ParticipantIDs gale_infotracacademiconefile_A736144645
crossref_primary_10_1007_s10107_021_01749_5
crossref_citationtrail_10_1007_s10107_021_01749_5
springer_journals_10_1007_s10107_021_01749_5
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
References Cheung, K.K., Gleixner, A., Steffy, D.E.: Verifying Integer Programming Results. In: International Conference on Integer Programming and Combinatorial Optimization. pp. 148–160. Springer (2017). https://doi.org/10.1007/978-3-319-59250-3_13
BurtonBAOzlenMComputing the crosscap number of a knot using integer programming and normal surfacesACM Trans. Math. Softw.2012300277310.1145/2382585.23825891295.57006
Cheung, K., Gleixner, A., Steffy, D.: VIPR. Verifying Integer Programming Results. https://github.com/ambros-gleixner/VIPR (accessed May 31, 2021)
Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) Theory and Applications of Satisfiability Testing – SAT 2014. pp. 422–429 (2014). https://doi.org/10.1007/978-3-319-09284-3_31
PulajJCutting planes for families implying Frankl’s conjectureMath. Comput.202089322829857404445210.1090/mcom/34611429.05199
Granlund, T., Team, G.D.: GNU MP 6.0 Multiple Precision Arithmetic Library. Samurai Media Limited, London, GBR (2015)
Espinoza, D.G.: On Linear Programming, Integer Programming and Cutting Planes. Ph.D. thesis, Georgia Institute of Technology (2006)
CookWDashSFukasawaRGoycooleaMNumerically safe gomory mixed-integer cutsInform. J. Comput.200921641649258834610.1287/ijoc.1090.03241243.90135
ApplegateDCookWDashSEspinozaDGExact solutions to linear programming problemsOp. Res. Lett.2007356693699236103610.1016/j.orl.2006.12.0101177.90282
GleixnerASteffyDEWolterKIterative refinement for linear programmingInforms. J. Comput.2016283449464350558110.1287/ijoc.2016.06921348.90460
Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edn. (2002). https://doi.org/10.1137/1.9780898718027
Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP Solver (2006)
de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3_24
Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin (2007)
Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization. pp. 449–481 (2013). https://doi.org/10.1007/978-3-642-38189-8_18
Kenter, F., Skipper, D.: Integer-programming bounds on pebbling numbers of cartesian-product graphs. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) Combinatorial Optimization and Applications. pp. 681–695 (2018). https://doi.org/10.1007/978-3-030-04651-4_46
Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of satisfiability: volume 185 frontiers in artificial intelligence and applications. IOS Press, NLD (2009)
Eifler, L., Gleixner, A.: Exact SCIP - a development version. https://github.com/leoneifler/exact-SCIP (accessed May 31, 2021)
Eifler, L., Gleixner, A., Pulaj, J.: A safe computational framework for integer programming applied to Chvátal’s conjecture (2020)
BofillMManyàFVidalAVillaretMNew complexity results for Łukasiewicz logicSoft Comput.2019232187219710.1007/s00500-018-3365-91418.03114
GleixnerASteffyDELinear programming using limited-precision oraclesMath. Program.2020183525554413783010.1007/s10107-019-01444-61450.90006
SteffyDEWolterKValid linear programming bounds for exact mixed-integer programmingInform. J. Comput.2013252271284305511710.1287/ijoc.1120.0501
Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Bodic, P.L., Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse Institute Berlin (2020)
Lancia, G., Pippia, E., Rinaldi, F.: Using integer programming to search for counterexamples: A case study. In: Kononov, A., Khachay, M., Kalyagin, V.A., Pardalos, P. (eds.) Mathematical Optimization Theory and Operations Research. pp. 69–84 (2020). https://doi.org/10.1007/978-3-030-49988-4
AchterbergTBixbyREGuZRothbergEWeningerDPresolve reductions in mixed integer programmingInform. J. Comput.2020322473506410369110.1287/ijoc.2018.085707290858
AssarfBGawrilowEHerrKJoswigMLorenzBPaffenholzARehnTComputing convex hulls and counting integer points with polymakeMath. Program. Comput.201791138361301210.1007/s12532-016-0104-z1370.90009
BertholdTMeasuring the impact of primal heuristicsOp. Res. Lett.2013416611614313183210.1016/j.orl.2013.08.0071287.90037
EiflerLGleixnerASinghMWilliamsonDPA computational status update for exact rational mixed integer programmingInteger Programming and Combinatorial Optimization2021ChamSpringer International Publishing16317710.1007/978-3-030-73879-2_121482.90125
BagnaraRHillPMZaffanellaEThe parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systemsSci. Comput. Program.2008721–2321252449010.1016/j.scico.2007.08.001
WilkenKLiuJHeffernanMOptimal instruction scheduling using integer programmingSIGPLAN Not.200035512113310.1145/358438.349318
Wolter, K.: Exact Mixed-Integer Programming. Ph.D. thesis, Technische Universität Berlin (2019)
AchterbergTKochTMartinABranching rules revisitedOp. Res. Lett.20053314254209103410.1016/j.orl.2004.04.0021076.90037
FaureGNieuwenhuisROliverasARodríguez-CarbonellEKleine BüningHZhaoXSAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and Commercial SolversTheory and Applications of Satisfiability Testing - SAT 20082008Berlin Heidelberg, Berlin, HeidelbergSpringer779010.1007/978-3-540-79719-7_81138.68537
CookWKochTSteffyDEWolterKA hybrid branch-and-bound approach for exact rational mixed-integer programmingMath. Program. Comput.201353305344310237310.1007/s12532-013-0055-61305.90310
Gleixner, A., Gottwald, L., Hoen, A.: PaPILO: Parallel Presolve for Integer and Linear Optimization. https://github.com/scipopt/papilo (accessed May 28, 2021)
NeumaierAShcherbinaOSafe bounds in linear and mixed-integer programmingMath. Program.200299283296203904110.1007/s10107-003-0433-31098.90043
Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T., Christophel, P.M., Jarck, K., Koch, T., Linderoth, J., Lübbecke, M., Mittelmann, H.D., Ozyurt, D., Ralphs, T.K., Salvagnin, D., Shinano, Y.: MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library. Mathematical Programming Computation (2020), accepted for publication
G Faure (1749_CR21) 2008
L Eifler (1749_CR18) 2021
A Neumaier (1749_CR32) 2002; 99
1749_CR5
T Achterberg (1749_CR2) 2020; 32
1749_CR4
B Assarf (1749_CR7) 2017; 9
A Gleixner (1749_CR25) 2020; 183
1749_CR27
1749_CR1
1749_CR28
1749_CR29
1749_CR23
J Pulaj (1749_CR33) 2020; 89
1749_CR24
1749_CR20
T Achterberg (1749_CR3) 2005; 33
1749_CR22
T Berthold (1749_CR9) 2013; 41
R Bagnara (1749_CR8) 2008; 72
W Cook (1749_CR16) 2013; 5
DE Steffy (1749_CR34) 2013; 25
A Gleixner (1749_CR26) 2016; 28
1749_CR17
1749_CR19
1749_CR13
1749_CR35
1749_CR14
K Wilken (1749_CR36) 2000; 35
1749_CR37
1749_CR30
1749_CR31
1749_CR10
M Bofill (1749_CR11) 2019; 23
W Cook (1749_CR15) 2009; 21
D Applegate (1749_CR6) 2007; 35
BA Burton (1749_CR12) 2012
References_xml – reference: Gleixner, A., Gottwald, L., Hoen, A.: PaPILO: Parallel Presolve for Integer and Linear Optimization. https://github.com/scipopt/papilo (accessed May 28, 2021)
– reference: NeumaierAShcherbinaOSafe bounds in linear and mixed-integer programmingMath. Program.200299283296203904110.1007/s10107-003-0433-31098.90043
– reference: BertholdTMeasuring the impact of primal heuristicsOp. Res. Lett.2013416611614313183210.1016/j.orl.2013.08.0071287.90037
– reference: GleixnerASteffyDELinear programming using limited-precision oraclesMath. Program.2020183525554413783010.1007/s10107-019-01444-61450.90006
– reference: Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP Solver (2006)
– reference: BurtonBAOzlenMComputing the crosscap number of a knot using integer programming and normal surfacesACM Trans. Math. Softw.2012300277310.1145/2382585.23825891295.57006
– reference: ApplegateDCookWDashSEspinozaDGExact solutions to linear programming problemsOp. Res. Lett.2007356693699236103610.1016/j.orl.2006.12.0101177.90282
– reference: Kenter, F., Skipper, D.: Integer-programming bounds on pebbling numbers of cartesian-product graphs. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) Combinatorial Optimization and Applications. pp. 681–695 (2018). https://doi.org/10.1007/978-3-030-04651-4_46
– reference: Lancia, G., Pippia, E., Rinaldi, F.: Using integer programming to search for counterexamples: A case study. In: Kononov, A., Khachay, M., Kalyagin, V.A., Pardalos, P. (eds.) Mathematical Optimization Theory and Operations Research. pp. 69–84 (2020). https://doi.org/10.1007/978-3-030-49988-4
– reference: Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) Theory and Applications of Satisfiability Testing – SAT 2014. pp. 422–429 (2014). https://doi.org/10.1007/978-3-319-09284-3_31
– reference: AssarfBGawrilowEHerrKJoswigMLorenzBPaffenholzARehnTComputing convex hulls and counting integer points with polymakeMath. Program. Comput.201791138361301210.1007/s12532-016-0104-z1370.90009
– reference: GleixnerASteffyDEWolterKIterative refinement for linear programmingInforms. J. Comput.2016283449464350558110.1287/ijoc.2016.06921348.90460
– reference: FaureGNieuwenhuisROliverasARodríguez-CarbonellEKleine BüningHZhaoXSAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and Commercial SolversTheory and Applications of Satisfiability Testing - SAT 20082008Berlin Heidelberg, Berlin, HeidelbergSpringer779010.1007/978-3-540-79719-7_81138.68537
– reference: Eifler, L., Gleixner, A., Pulaj, J.: A safe computational framework for integer programming applied to Chvátal’s conjecture (2020)
– reference: Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T., Christophel, P.M., Jarck, K., Koch, T., Linderoth, J., Lübbecke, M., Mittelmann, H.D., Ozyurt, D., Ralphs, T.K., Salvagnin, D., Shinano, Y.: MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library. Mathematical Programming Computation (2020), accepted for publication
– reference: EiflerLGleixnerASinghMWilliamsonDPA computational status update for exact rational mixed integer programmingInteger Programming and Combinatorial Optimization2021ChamSpringer International Publishing16317710.1007/978-3-030-73879-2_121482.90125
– reference: Espinoza, D.G.: On Linear Programming, Integer Programming and Cutting Planes. Ph.D. thesis, Georgia Institute of Technology (2006)
– reference: Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edn. (2002). https://doi.org/10.1137/1.9780898718027
– reference: SteffyDEWolterKValid linear programming bounds for exact mixed-integer programmingInform. J. Comput.2013252271284305511710.1287/ijoc.1120.0501
– reference: AchterbergTKochTMartinABranching rules revisitedOp. Res. Lett.20053314254209103410.1016/j.orl.2004.04.0021076.90037
– reference: Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin (2007)
– reference: PulajJCutting planes for families implying Frankl’s conjectureMath. Comput.202089322829857404445210.1090/mcom/34611429.05199
– reference: Granlund, T., Team, G.D.: GNU MP 6.0 Multiple Precision Arithmetic Library. Samurai Media Limited, London, GBR (2015)
– reference: BagnaraRHillPMZaffanellaEThe parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systemsSci. Comput. Program.2008721–2321252449010.1016/j.scico.2007.08.001
– reference: AchterbergTBixbyREGuZRothbergEWeningerDPresolve reductions in mixed integer programmingInform. J. Comput.2020322473506410369110.1287/ijoc.2018.085707290858
– reference: de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3_24
– reference: CookWKochTSteffyDEWolterKA hybrid branch-and-bound approach for exact rational mixed-integer programmingMath. Program. Comput.201353305344310237310.1007/s12532-013-0055-61305.90310
– reference: Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization. pp. 449–481 (2013). https://doi.org/10.1007/978-3-642-38189-8_18
– reference: CookWDashSFukasawaRGoycooleaMNumerically safe gomory mixed-integer cutsInform. J. Comput.200921641649258834610.1287/ijoc.1090.03241243.90135
– reference: Eifler, L., Gleixner, A.: Exact SCIP - a development version. https://github.com/leoneifler/exact-SCIP (accessed May 31, 2021)
– reference: BofillMManyàFVidalAVillaretMNew complexity results for Łukasiewicz logicSoft Comput.2019232187219710.1007/s00500-018-3365-91418.03114
– reference: WilkenKLiuJHeffernanMOptimal instruction scheduling using integer programmingSIGPLAN Not.200035512113310.1145/358438.349318
– reference: Wolter, K.: Exact Mixed-Integer Programming. Ph.D. thesis, Technische Universität Berlin (2019)
– reference: Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of satisfiability: volume 185 frontiers in artificial intelligence and applications. IOS Press, NLD (2009)
– reference: Cheung, K.K., Gleixner, A., Steffy, D.E.: Verifying Integer Programming Results. In: International Conference on Integer Programming and Combinatorial Optimization. pp. 148–160. Springer (2017). https://doi.org/10.1007/978-3-319-59250-3_13
– reference: Cheung, K., Gleixner, A., Steffy, D.: VIPR. Verifying Integer Programming Results. https://github.com/ambros-gleixner/VIPR (accessed May 31, 2021)
– reference: Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Bodic, P.L., Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse Institute Berlin (2020)
– start-page: 163
  volume-title: Integer Programming and Combinatorial Optimization
  year: 2021
  ident: 1749_CR18
  doi: 10.1007/978-3-030-73879-2_12
– ident: 1749_CR24
  doi: 10.1007/s12532-020-00194-3
– volume: 32
  start-page: 473
  issue: 2
  year: 2020
  ident: 1749_CR2
  publication-title: Inform. J. Comput.
  doi: 10.1287/ijoc.2018.0857
– ident: 1749_CR10
– start-page: 77
  volume-title: Theory and Applications of Satisfiability Testing - SAT 2008
  year: 2008
  ident: 1749_CR21
  doi: 10.1007/978-3-540-79719-7_8
– ident: 1749_CR27
– volume: 23
  start-page: 2187
  year: 2019
  ident: 1749_CR11
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3365-9
– volume: 9
  start-page: 1
  issue: 1
  year: 2017
  ident: 1749_CR7
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-016-0104-z
– volume: 35
  start-page: 121
  issue: 5
  year: 2000
  ident: 1749_CR36
  publication-title: SIGPLAN Not.
  doi: 10.1145/358438.349318
– ident: 1749_CR35
  doi: 10.1007/978-3-319-09284-3_31
– volume: 25
  start-page: 271
  issue: 2
  year: 2013
  ident: 1749_CR34
  publication-title: Inform. J. Comput.
  doi: 10.1287/ijoc.1120.0501
– ident: 1749_CR31
  doi: 10.1007/978-3-540-78800-3_24
– ident: 1749_CR14
– ident: 1749_CR23
– ident: 1749_CR37
– ident: 1749_CR5
– volume: 28
  start-page: 449
  issue: 3
  year: 2016
  ident: 1749_CR26
  publication-title: Informs. J. Comput.
  doi: 10.1287/ijoc.2016.0692
– ident: 1749_CR1
– year: 2012
  ident: 1749_CR12
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/2382585.2382589
– volume: 41
  start-page: 611
  issue: 6
  year: 2013
  ident: 1749_CR9
  publication-title: Op. Res. Lett.
  doi: 10.1016/j.orl.2013.08.007
– volume: 89
  start-page: 829
  issue: 322
  year: 2020
  ident: 1749_CR33
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3461
– volume: 99
  start-page: 283
  year: 2002
  ident: 1749_CR32
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0433-3
– volume: 33
  start-page: 42
  issue: 1
  year: 2005
  ident: 1749_CR3
  publication-title: Op. Res. Lett.
  doi: 10.1016/j.orl.2004.04.002
– volume: 5
  start-page: 305
  issue: 3
  year: 2013
  ident: 1749_CR16
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-013-0055-6
– ident: 1749_CR19
– ident: 1749_CR20
– ident: 1749_CR22
– ident: 1749_CR29
  doi: 10.1007/978-3-030-04651-4_46
– ident: 1749_CR30
  doi: 10.1007/978-3-030-49988-4
– ident: 1749_CR13
  doi: 10.1007/978-3-319-59250-3_13
– volume: 35
  start-page: 693
  issue: 6
  year: 2007
  ident: 1749_CR6
  publication-title: Op. Res. Lett.
  doi: 10.1016/j.orl.2006.12.010
– ident: 1749_CR17
– volume: 183
  start-page: 525
  year: 2020
  ident: 1749_CR25
  publication-title: Math. Program.
  doi: 10.1007/s10107-019-01444-6
– volume: 21
  start-page: 641
  year: 2009
  ident: 1749_CR15
  publication-title: Inform. J. Comput.
  doi: 10.1287/ijoc.1090.0324
– ident: 1749_CR4
  doi: 10.1007/978-3-642-38189-8_18
– ident: 1749_CR28
  doi: 10.1137/1.9780898718027
– volume: 72
  start-page: 3
  issue: 1–2
  year: 2008
  ident: 1749_CR8
  publication-title: Sci. Comput. Program.
  doi: 10.1016/j.scico.2007.08.001
SSID ssj0001388
Score 2.5040607
Snippet The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision...
SourceID gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 793
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
Title A computational status update for exact rational mixed integer programming
URI https://link.springer.com/article/10.1007/s10107-021-01749-5
Volume 197
WOSCitedRecordID wos000740163700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86fdAHv8X5RR4EH7TQNk2bPg5xiOgQP8beQpomMNjmaDvZn-8lS-cGMtCX0sL1CJfk7vJxvx9CVxBRwTUGoadTYSjMAu1lzE89RhWNJAQU37JEdJ-STof1eumLKwor69vu9ZGk9dQLxW6B2VYLzfI3iVKPrqMNCHfMEDa8vnXn_jcgjNVErSY7cKUyv-tYCke1U14-ErWRpr37vzbuoR2XWeLWbCjsozU1OkDbC3iD8PU8B2ktD9FjC0vL6eD2A7EpLpqUeDI2uwAYslmspkJWuKgFhv2pyrFFmFAFdle7hqD6CH2079_vHjxHreBJkkQVPIliVNqDURETFec0zzLoT5GF8EIyaoEIg1hLX_lKxAJSJZKBoE_DKMvJMWqMPkfqBOFIq4TFeSoTDQ4g14LGqWI51QoWY4mOmyioLcylwx039BcD_oOYbKzGwWrcWo3TJrqZ_zOeoW6slL42HcfNlATNUrjKAmifAbfirYTYZW8Ekrd1v3E3V8sVik__Jn6GtgwZ_exO9zlqVMVEXaBN-VX1y-LSDtJvmefe5w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BfXBb3F-5kHwQQvt0rTp4xBl6jZE59hbaNMEBm6OtpP9-V6ydG4gA30pLVyPcEnuLh_3-yF0BREVXKNXc1QUawozTzkJcyOHUUl9AQHFNSwR3WbYbrNeL3qxRWF5edu9PJI0nnqu2M3T22o1vfwN_cihq2jNh4ilEfNf37oz_-sRxkqiVp0d2FKZ33UshKPSKS8eiZpI87Dzvzbuom2bWeL6dCjsoRU53Edbc3iD8NWagbTmB-ipjoXhdLD7gVgXF41zPB7pXQAM2SyWk1gUOCsFBv2JTLFBmJAZtle7BqD6EL0_3HfuGo6lVnAECf0CnkQyKszBaBwQGaQ0TRLozzipwQtJqAEi9AIlXOnKOIghVSIJCLq05icpOUKV4edQHiPsKxmyII1EqMABpCqmQSRZSpWExViogirySgtzYXHHNf3FB_9BTNZW42A1bqzGaRXdzP4ZTVE3lkpf647jekqCZhHbygJonwa34vWQmGWvD5K3Zb9xO1fzJYpP_iZ-iTYanVaTNx_bz6doUxPTT-93n6FKkY3lOVoXX0U_zy7MgP0GFX_hyw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA5aRfTBW6xnHgQfdOle2eOxqMWjloJafAvZbAIFW8vuVvrznWSztQUpiC_LLswOYZLMkcx8g9AFWFRQjY5ryZipFmaOtJLIjq2ICOJzMCi27hLRa4edTvT-Hndnqvh1tnt1JVnWNCiUpmHRGKWyMVP45qgjNleFwqEfW2QZrfgqkV7F6y-9qS52vCiqmrYqT8GUzfzOY840VQp6_npUW53W1v_Hu402jceJm-US2UFLYriLNmZwCOHreQremu-hxybmuteDOSfEquhonOPxSJ0OYPBysZgwXuCsIhj0JyLFGnlCZNikfA2A9T56a9293txbpuWCxb3QL-DpiYhwfWHKAk8EKUmTBOaZJS68eAnRAIVOILktbMECBi6UlwChTVw_Sb0DVBt-DsUhwr4UYRSkMQ8lKIZUMhLEIkqJFBCkhTKoI6eSNuUGj1y1xfigP0jKSmoUpEa11Cipo6vpP6MSjWMh9aWaRKq2KnDmzFQcwPgU6BVthp4Oh32gvK7mkJo9nC9gfPQ38nO01r1t0fZD5-kYrat-9WXa9wmqFdlYnKJV_lX08-xMr91vuanqrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+status+update+for+exact+rational+mixed+integer+programming&rft.jtitle=Mathematical+programming&rft.au=Eifler%2C+Leon&rft.au=Gleixner%2C+Ambros&rft.date=2023-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=197&rft.issue=2&rft.spage=793&rft.epage=812&rft_id=info:doi/10.1007%2Fs10107-021-01749-5&rft.externalDocID=10_1007_s10107_021_01749_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon