A computational status update for exact rational mixed integer programming
The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework th...
Saved in:
| Published in: | Mathematical programming Vol. 197; no. 2; pp. 793 - 812 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2023
Springer |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 10.7x over the original framework and 2.9 times as many instances solved within a time limit of two hours. |
|---|---|
| AbstractList | The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 10.7x over the original framework and 2.9 times as many instances solved within a time limit of two hours. The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 10.7x over the original framework and 2.9 times as many instances solved within a time limit of two hours. |
| Audience | Academic |
| Author | Gleixner, Ambros Eifler, Leon |
| Author_xml | – sequence: 1 givenname: Leon orcidid: 0000-0003-0245-9344 surname: Eifler fullname: Eifler, Leon email: eifler@zib.de organization: Zuse Institute Berlin – sequence: 2 givenname: Ambros orcidid: 0000-0003-0391-5903 surname: Gleixner fullname: Gleixner, Ambros organization: Zuse Institute Berlin, HTW Berlin |
| BookMark | eNp9kMtqwzAQRUVJoUnaH-hKP-B0ZL2cZQh9EuimXQtZlo2CbRnJhvTvq9TtposgkC5izgxzVmjR-94idE9gQwDkQyRAQGaQkwyIZNuMX6ElYVRkTDCxQEuAnGdcELhBqxiPAEBoUSzR2w4b3w3TqEfne93imNIU8TRUerS49gHbkzYjDn8FnTvZCrt-tI0NeAi-CbrrXN_coutat9He_b5r9Pn0-LF_yQ7vz6_73SEzVLIx3dQW3ABQYFpQKypelWVpjS7zFGjJqZRbIKI2YMFqoXMOtEyFwHNWVnSNNnPfRrdWub72Y9Amncp2ziQvtUv_O0kFYWl7noB8BkzwMQZbqyG4TocvRUCd9alZn0r61I8-dYaKf5Bxs6Q0zbWXUTqjMc3pkyV19FNI7uIl6htyLYeF |
| CitedBy_id | crossref_primary_10_1287_ijoc_2024_0844 crossref_primary_10_1007_s11241_023_09408_y crossref_primary_10_1016_j_jtbi_2024_111731 crossref_primary_10_1007_s10107_024_02183_z crossref_primary_10_1137_23M156046X crossref_primary_10_1287_ijoc_2022_0171 crossref_primary_10_1007_s12532_024_00262_y crossref_primary_10_1287_ijoc_2023_0409 crossref_primary_10_1145_3702244 crossref_primary_10_1016_j_ejor_2024_11_018 crossref_primary_10_1287_ijoc_2022_0257 |
| Cites_doi | 10.1007/978-3-030-73879-2_12 10.1007/s12532-020-00194-3 10.1287/ijoc.2018.0857 10.1007/978-3-540-79719-7_8 10.1007/s00500-018-3365-9 10.1007/s12532-016-0104-z 10.1145/358438.349318 10.1007/978-3-319-09284-3_31 10.1287/ijoc.1120.0501 10.1007/978-3-540-78800-3_24 10.1287/ijoc.2016.0692 10.1145/2382585.2382589 10.1016/j.orl.2013.08.007 10.1090/mcom/3461 10.1007/s10107-003-0433-3 10.1016/j.orl.2004.04.002 10.1007/s12532-013-0055-6 10.1007/978-3-030-04651-4_46 10.1007/978-3-030-49988-4 10.1007/978-3-319-59250-3_13 10.1016/j.orl.2006.12.010 10.1007/s10107-019-01444-6 10.1287/ijoc.1090.0324 10.1007/978-3-642-38189-8_18 10.1137/1.9780898718027 10.1016/j.scico.2007.08.001 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 COPYRIGHT 2023 Springer |
| Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2023 Springer |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1007/s10107-021-01749-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 812 |
| ExternalDocumentID | A736144645 10_1007_s10107_021_01749_5 |
| GrantInformation_xml | – fundername: Bundesministerium für Forschung und Technologie grantid: 05M14ZAM; 05M20ZBM funderid: http://dx.doi.org/10.13039/501100004937 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c374t-c33e85c00304a63e6d5dbbbecab2dbb3b53779016fc0e0ea6a2503b3e60524bd3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000740163700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Sat Nov 29 10:29:36 EST 2025 Sat Nov 29 03:34:03 EST 2025 Tue Nov 18 21:40:20 EST 2025 Fri Feb 21 02:45:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Mixed integer programming Symbolic computations Exact computation Rational arithmetic Certificate of correctness |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c374t-c33e85c00304a63e6d5dbbbecab2dbb3b53779016fc0e0ea6a2503b3e60524bd3 |
| ORCID | 0000-0003-0245-9344 0000-0003-0391-5903 |
| OpenAccessLink | https://link.springer.com/10.1007/s10107-021-01749-5 |
| PageCount | 20 |
| ParticipantIDs | gale_infotracacademiconefile_A736144645 crossref_primary_10_1007_s10107_021_01749_5 crossref_citationtrail_10_1007_s10107_021_01749_5 springer_journals_10_1007_s10107_021_01749_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20230200 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
| References | Cheung, K.K., Gleixner, A., Steffy, D.E.: Verifying Integer Programming Results. In: International Conference on Integer Programming and Combinatorial Optimization. pp. 148–160. Springer (2017). https://doi.org/10.1007/978-3-319-59250-3_13 BurtonBAOzlenMComputing the crosscap number of a knot using integer programming and normal surfacesACM Trans. Math. Softw.2012300277310.1145/2382585.23825891295.57006 Cheung, K., Gleixner, A., Steffy, D.: VIPR. Verifying Integer Programming Results. https://github.com/ambros-gleixner/VIPR (accessed May 31, 2021) Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) Theory and Applications of Satisfiability Testing – SAT 2014. pp. 422–429 (2014). https://doi.org/10.1007/978-3-319-09284-3_31 PulajJCutting planes for families implying Frankl’s conjectureMath. Comput.202089322829857404445210.1090/mcom/34611429.05199 Granlund, T., Team, G.D.: GNU MP 6.0 Multiple Precision Arithmetic Library. Samurai Media Limited, London, GBR (2015) Espinoza, D.G.: On Linear Programming, Integer Programming and Cutting Planes. Ph.D. thesis, Georgia Institute of Technology (2006) CookWDashSFukasawaRGoycooleaMNumerically safe gomory mixed-integer cutsInform. J. Comput.200921641649258834610.1287/ijoc.1090.03241243.90135 ApplegateDCookWDashSEspinozaDGExact solutions to linear programming problemsOp. Res. Lett.2007356693699236103610.1016/j.orl.2006.12.0101177.90282 GleixnerASteffyDEWolterKIterative refinement for linear programmingInforms. J. Comput.2016283449464350558110.1287/ijoc.2016.06921348.90460 Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edn. (2002). https://doi.org/10.1137/1.9780898718027 Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP Solver (2006) de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3_24 Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin (2007) Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization. pp. 449–481 (2013). https://doi.org/10.1007/978-3-642-38189-8_18 Kenter, F., Skipper, D.: Integer-programming bounds on pebbling numbers of cartesian-product graphs. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) Combinatorial Optimization and Applications. pp. 681–695 (2018). https://doi.org/10.1007/978-3-030-04651-4_46 Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of satisfiability: volume 185 frontiers in artificial intelligence and applications. IOS Press, NLD (2009) Eifler, L., Gleixner, A.: Exact SCIP - a development version. https://github.com/leoneifler/exact-SCIP (accessed May 31, 2021) Eifler, L., Gleixner, A., Pulaj, J.: A safe computational framework for integer programming applied to Chvátal’s conjecture (2020) BofillMManyàFVidalAVillaretMNew complexity results for Łukasiewicz logicSoft Comput.2019232187219710.1007/s00500-018-3365-91418.03114 GleixnerASteffyDELinear programming using limited-precision oraclesMath. Program.2020183525554413783010.1007/s10107-019-01444-61450.90006 SteffyDEWolterKValid linear programming bounds for exact mixed-integer programmingInform. J. Comput.2013252271284305511710.1287/ijoc.1120.0501 Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Bodic, P.L., Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse Institute Berlin (2020) Lancia, G., Pippia, E., Rinaldi, F.: Using integer programming to search for counterexamples: A case study. In: Kononov, A., Khachay, M., Kalyagin, V.A., Pardalos, P. (eds.) Mathematical Optimization Theory and Operations Research. pp. 69–84 (2020). https://doi.org/10.1007/978-3-030-49988-4 AchterbergTBixbyREGuZRothbergEWeningerDPresolve reductions in mixed integer programmingInform. J. Comput.2020322473506410369110.1287/ijoc.2018.085707290858 AssarfBGawrilowEHerrKJoswigMLorenzBPaffenholzARehnTComputing convex hulls and counting integer points with polymakeMath. Program. Comput.201791138361301210.1007/s12532-016-0104-z1370.90009 BertholdTMeasuring the impact of primal heuristicsOp. Res. Lett.2013416611614313183210.1016/j.orl.2013.08.0071287.90037 EiflerLGleixnerASinghMWilliamsonDPA computational status update for exact rational mixed integer programmingInteger Programming and Combinatorial Optimization2021ChamSpringer International Publishing16317710.1007/978-3-030-73879-2_121482.90125 BagnaraRHillPMZaffanellaEThe parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systemsSci. Comput. Program.2008721–2321252449010.1016/j.scico.2007.08.001 WilkenKLiuJHeffernanMOptimal instruction scheduling using integer programmingSIGPLAN Not.200035512113310.1145/358438.349318 Wolter, K.: Exact Mixed-Integer Programming. Ph.D. thesis, Technische Universität Berlin (2019) AchterbergTKochTMartinABranching rules revisitedOp. Res. Lett.20053314254209103410.1016/j.orl.2004.04.0021076.90037 FaureGNieuwenhuisROliverasARodríguez-CarbonellEKleine BüningHZhaoXSAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and Commercial SolversTheory and Applications of Satisfiability Testing - SAT 20082008Berlin Heidelberg, Berlin, HeidelbergSpringer779010.1007/978-3-540-79719-7_81138.68537 CookWKochTSteffyDEWolterKA hybrid branch-and-bound approach for exact rational mixed-integer programmingMath. Program. Comput.201353305344310237310.1007/s12532-013-0055-61305.90310 Gleixner, A., Gottwald, L., Hoen, A.: PaPILO: Parallel Presolve for Integer and Linear Optimization. https://github.com/scipopt/papilo (accessed May 28, 2021) NeumaierAShcherbinaOSafe bounds in linear and mixed-integer programmingMath. Program.200299283296203904110.1007/s10107-003-0433-31098.90043 Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T., Christophel, P.M., Jarck, K., Koch, T., Linderoth, J., Lübbecke, M., Mittelmann, H.D., Ozyurt, D., Ralphs, T.K., Salvagnin, D., Shinano, Y.: MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library. Mathematical Programming Computation (2020), accepted for publication G Faure (1749_CR21) 2008 L Eifler (1749_CR18) 2021 A Neumaier (1749_CR32) 2002; 99 1749_CR5 T Achterberg (1749_CR2) 2020; 32 1749_CR4 B Assarf (1749_CR7) 2017; 9 A Gleixner (1749_CR25) 2020; 183 1749_CR27 1749_CR1 1749_CR28 1749_CR29 1749_CR23 J Pulaj (1749_CR33) 2020; 89 1749_CR24 1749_CR20 T Achterberg (1749_CR3) 2005; 33 1749_CR22 T Berthold (1749_CR9) 2013; 41 R Bagnara (1749_CR8) 2008; 72 W Cook (1749_CR16) 2013; 5 DE Steffy (1749_CR34) 2013; 25 A Gleixner (1749_CR26) 2016; 28 1749_CR17 1749_CR19 1749_CR13 1749_CR35 1749_CR14 K Wilken (1749_CR36) 2000; 35 1749_CR37 1749_CR30 1749_CR31 1749_CR10 M Bofill (1749_CR11) 2019; 23 W Cook (1749_CR15) 2009; 21 D Applegate (1749_CR6) 2007; 35 BA Burton (1749_CR12) 2012 |
| References_xml | – reference: Gleixner, A., Gottwald, L., Hoen, A.: PaPILO: Parallel Presolve for Integer and Linear Optimization. https://github.com/scipopt/papilo (accessed May 28, 2021) – reference: NeumaierAShcherbinaOSafe bounds in linear and mixed-integer programmingMath. Program.200299283296203904110.1007/s10107-003-0433-31098.90043 – reference: BertholdTMeasuring the impact of primal heuristicsOp. Res. Lett.2013416611614313183210.1016/j.orl.2013.08.0071287.90037 – reference: GleixnerASteffyDELinear programming using limited-precision oraclesMath. Program.2020183525554413783010.1007/s10107-019-01444-61450.90006 – reference: Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP Solver (2006) – reference: BurtonBAOzlenMComputing the crosscap number of a knot using integer programming and normal surfacesACM Trans. Math. Softw.2012300277310.1145/2382585.23825891295.57006 – reference: ApplegateDCookWDashSEspinozaDGExact solutions to linear programming problemsOp. Res. Lett.2007356693699236103610.1016/j.orl.2006.12.0101177.90282 – reference: Kenter, F., Skipper, D.: Integer-programming bounds on pebbling numbers of cartesian-product graphs. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) Combinatorial Optimization and Applications. pp. 681–695 (2018). https://doi.org/10.1007/978-3-030-04651-4_46 – reference: Lancia, G., Pippia, E., Rinaldi, F.: Using integer programming to search for counterexamples: A case study. In: Kononov, A., Khachay, M., Kalyagin, V.A., Pardalos, P. (eds.) Mathematical Optimization Theory and Operations Research. pp. 69–84 (2020). https://doi.org/10.1007/978-3-030-49988-4 – reference: Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) Theory and Applications of Satisfiability Testing – SAT 2014. pp. 422–429 (2014). https://doi.org/10.1007/978-3-319-09284-3_31 – reference: AssarfBGawrilowEHerrKJoswigMLorenzBPaffenholzARehnTComputing convex hulls and counting integer points with polymakeMath. Program. Comput.201791138361301210.1007/s12532-016-0104-z1370.90009 – reference: GleixnerASteffyDEWolterKIterative refinement for linear programmingInforms. J. Comput.2016283449464350558110.1287/ijoc.2016.06921348.90460 – reference: FaureGNieuwenhuisROliverasARodríguez-CarbonellEKleine BüningHZhaoXSAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and Commercial SolversTheory and Applications of Satisfiability Testing - SAT 20082008Berlin Heidelberg, Berlin, HeidelbergSpringer779010.1007/978-3-540-79719-7_81138.68537 – reference: Eifler, L., Gleixner, A., Pulaj, J.: A safe computational framework for integer programming applied to Chvátal’s conjecture (2020) – reference: Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T., Christophel, P.M., Jarck, K., Koch, T., Linderoth, J., Lübbecke, M., Mittelmann, H.D., Ozyurt, D., Ralphs, T.K., Salvagnin, D., Shinano, Y.: MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Library. Mathematical Programming Computation (2020), accepted for publication – reference: EiflerLGleixnerASinghMWilliamsonDPA computational status update for exact rational mixed integer programmingInteger Programming and Combinatorial Optimization2021ChamSpringer International Publishing16317710.1007/978-3-030-73879-2_121482.90125 – reference: Espinoza, D.G.: On Linear Programming, Integer Programming and Cutting Planes. Ph.D. thesis, Georgia Institute of Technology (2006) – reference: Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edn. (2002). https://doi.org/10.1137/1.9780898718027 – reference: SteffyDEWolterKValid linear programming bounds for exact mixed-integer programmingInform. J. Comput.2013252271284305511710.1287/ijoc.1120.0501 – reference: AchterbergTKochTMartinABranching rules revisitedOp. Res. Lett.20053314254209103410.1016/j.orl.2004.04.0021076.90037 – reference: Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin (2007) – reference: PulajJCutting planes for families implying Frankl’s conjectureMath. Comput.202089322829857404445210.1090/mcom/34611429.05199 – reference: Granlund, T., Team, G.D.: GNU MP 6.0 Multiple Precision Arithmetic Library. Samurai Media Limited, London, GBR (2015) – reference: BagnaraRHillPMZaffanellaEThe parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systemsSci. Comput. Program.2008721–2321252449010.1016/j.scico.2007.08.001 – reference: AchterbergTBixbyREGuZRothbergEWeningerDPresolve reductions in mixed integer programmingInform. J. Comput.2020322473506410369110.1287/ijoc.2018.085707290858 – reference: de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3_24 – reference: CookWKochTSteffyDEWolterKA hybrid branch-and-bound approach for exact rational mixed-integer programmingMath. Program. Comput.201353305344310237310.1007/s12532-013-0055-61305.90310 – reference: Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization. pp. 449–481 (2013). https://doi.org/10.1007/978-3-642-38189-8_18 – reference: CookWDashSFukasawaRGoycooleaMNumerically safe gomory mixed-integer cutsInform. J. Comput.200921641649258834610.1287/ijoc.1090.03241243.90135 – reference: Eifler, L., Gleixner, A.: Exact SCIP - a development version. https://github.com/leoneifler/exact-SCIP (accessed May 31, 2021) – reference: BofillMManyàFVidalAVillaretMNew complexity results for Łukasiewicz logicSoft Comput.2019232187219710.1007/s00500-018-3365-91418.03114 – reference: WilkenKLiuJHeffernanMOptimal instruction scheduling using integer programmingSIGPLAN Not.200035512113310.1145/358438.349318 – reference: Wolter, K.: Exact Mixed-Integer Programming. Ph.D. thesis, Technische Universität Berlin (2019) – reference: Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of satisfiability: volume 185 frontiers in artificial intelligence and applications. IOS Press, NLD (2009) – reference: Cheung, K.K., Gleixner, A., Steffy, D.E.: Verifying Integer Programming Results. In: International Conference on Integer Programming and Combinatorial Optimization. pp. 148–160. Springer (2017). https://doi.org/10.1007/978-3-319-59250-3_13 – reference: Cheung, K., Gleixner, A., Steffy, D.: VIPR. Verifying Integer Programming Results. https://github.com/ambros-gleixner/VIPR (accessed May 31, 2021) – reference: Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Bodic, P.L., Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse Institute Berlin (2020) – start-page: 163 volume-title: Integer Programming and Combinatorial Optimization year: 2021 ident: 1749_CR18 doi: 10.1007/978-3-030-73879-2_12 – ident: 1749_CR24 doi: 10.1007/s12532-020-00194-3 – volume: 32 start-page: 473 issue: 2 year: 2020 ident: 1749_CR2 publication-title: Inform. J. Comput. doi: 10.1287/ijoc.2018.0857 – ident: 1749_CR10 – start-page: 77 volume-title: Theory and Applications of Satisfiability Testing - SAT 2008 year: 2008 ident: 1749_CR21 doi: 10.1007/978-3-540-79719-7_8 – ident: 1749_CR27 – volume: 23 start-page: 2187 year: 2019 ident: 1749_CR11 publication-title: Soft Comput. doi: 10.1007/s00500-018-3365-9 – volume: 9 start-page: 1 issue: 1 year: 2017 ident: 1749_CR7 publication-title: Math. Program. Comput. doi: 10.1007/s12532-016-0104-z – volume: 35 start-page: 121 issue: 5 year: 2000 ident: 1749_CR36 publication-title: SIGPLAN Not. doi: 10.1145/358438.349318 – ident: 1749_CR35 doi: 10.1007/978-3-319-09284-3_31 – volume: 25 start-page: 271 issue: 2 year: 2013 ident: 1749_CR34 publication-title: Inform. J. Comput. doi: 10.1287/ijoc.1120.0501 – ident: 1749_CR31 doi: 10.1007/978-3-540-78800-3_24 – ident: 1749_CR14 – ident: 1749_CR23 – ident: 1749_CR37 – ident: 1749_CR5 – volume: 28 start-page: 449 issue: 3 year: 2016 ident: 1749_CR26 publication-title: Informs. J. Comput. doi: 10.1287/ijoc.2016.0692 – ident: 1749_CR1 – year: 2012 ident: 1749_CR12 publication-title: ACM Trans. Math. Softw. doi: 10.1145/2382585.2382589 – volume: 41 start-page: 611 issue: 6 year: 2013 ident: 1749_CR9 publication-title: Op. Res. Lett. doi: 10.1016/j.orl.2013.08.007 – volume: 89 start-page: 829 issue: 322 year: 2020 ident: 1749_CR33 publication-title: Math. Comput. doi: 10.1090/mcom/3461 – volume: 99 start-page: 283 year: 2002 ident: 1749_CR32 publication-title: Math. Program. doi: 10.1007/s10107-003-0433-3 – volume: 33 start-page: 42 issue: 1 year: 2005 ident: 1749_CR3 publication-title: Op. Res. Lett. doi: 10.1016/j.orl.2004.04.002 – volume: 5 start-page: 305 issue: 3 year: 2013 ident: 1749_CR16 publication-title: Math. Program. Comput. doi: 10.1007/s12532-013-0055-6 – ident: 1749_CR19 – ident: 1749_CR20 – ident: 1749_CR22 – ident: 1749_CR29 doi: 10.1007/978-3-030-04651-4_46 – ident: 1749_CR30 doi: 10.1007/978-3-030-49988-4 – ident: 1749_CR13 doi: 10.1007/978-3-319-59250-3_13 – volume: 35 start-page: 693 issue: 6 year: 2007 ident: 1749_CR6 publication-title: Op. Res. Lett. doi: 10.1016/j.orl.2006.12.010 – ident: 1749_CR17 – volume: 183 start-page: 525 year: 2020 ident: 1749_CR25 publication-title: Math. Program. doi: 10.1007/s10107-019-01444-6 – volume: 21 start-page: 641 year: 2009 ident: 1749_CR15 publication-title: Inform. J. Comput. doi: 10.1287/ijoc.1090.0324 – ident: 1749_CR4 doi: 10.1007/978-3-642-38189-8_18 – ident: 1749_CR28 doi: 10.1137/1.9780898718027 – volume: 72 start-page: 3 issue: 1–2 year: 2008 ident: 1749_CR8 publication-title: Sci. Comput. Program. doi: 10.1016/j.scico.2007.08.001 |
| SSID | ssj0001388 |
| Score | 2.5040607 |
| Snippet | The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision... |
| SourceID | gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 793 |
| SubjectTerms | Calculus of Variations and Optimal Control; Optimization Combinatorics Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Theoretical |
| Title | A computational status update for exact rational mixed integer programming |
| URI | https://link.springer.com/article/10.1007/s10107-021-01749-5 |
| Volume | 197 |
| WOSCitedRecordID | wos000740163700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature Consortium list (Orbis Cascade Alliance) customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86fdAHv8X5RR4EH7TQNk2bPg5xiOgQP8beQpomMNjmaDvZn-8lS-cGMtCX0sL1CJfk7vJxvx9CVxBRwTUGoadTYSjMAu1lzE89RhWNJAQU37JEdJ-STof1eumLKwor69vu9ZGk9dQLxW6B2VYLzfI3iVKPrqMNCHfMEDa8vnXn_jcgjNVErSY7cKUyv-tYCke1U14-ErWRpr37vzbuoR2XWeLWbCjsozU1OkDbC3iD8PU8B2ktD9FjC0vL6eD2A7EpLpqUeDI2uwAYslmspkJWuKgFhv2pyrFFmFAFdle7hqD6CH2079_vHjxHreBJkkQVPIliVNqDURETFec0zzLoT5GF8EIyaoEIg1hLX_lKxAJSJZKBoE_DKMvJMWqMPkfqBOFIq4TFeSoTDQ4g14LGqWI51QoWY4mOmyioLcylwx039BcD_oOYbKzGwWrcWo3TJrqZ_zOeoW6slL42HcfNlATNUrjKAmifAbfirYTYZW8Ekrd1v3E3V8sVik__Jn6GtgwZ_exO9zlqVMVEXaBN-VX1y-LSDtJvmefe5w |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BfXBb3F-5kHwQQvt0rTp4xBl6jZE59hbaNMEBm6OtpP9-V6ydG4gA30pLVyPcEnuLh_3-yF0BREVXKNXc1QUawozTzkJcyOHUUl9AQHFNSwR3WbYbrNeL3qxRWF5edu9PJI0nnqu2M3T22o1vfwN_cihq2jNh4ilEfNf37oz_-sRxkqiVp0d2FKZ33UshKPSKS8eiZpI87Dzvzbuom2bWeL6dCjsoRU53Edbc3iD8NWagbTmB-ipjoXhdLD7gVgXF41zPB7pXQAM2SyWk1gUOCsFBv2JTLFBmJAZtle7BqD6EL0_3HfuGo6lVnAECf0CnkQyKszBaBwQGaQ0TRLozzipwQtJqAEi9AIlXOnKOIghVSIJCLq05icpOUKV4edQHiPsKxmyII1EqMABpCqmQSRZSpWExViogirySgtzYXHHNf3FB_9BTNZW42A1bqzGaRXdzP4ZTVE3lkpf647jekqCZhHbygJonwa34vWQmGWvD5K3Zb9xO1fzJYpP_iZ-iTYanVaTNx_bz6doUxPTT-93n6FKkY3lOVoXX0U_zy7MgP0GFX_hyw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA5aRfTBW6xnHgQfdOle2eOxqMWjloJafAvZbAIFW8vuVvrznWSztQUpiC_LLswOYZLMkcx8g9AFWFRQjY5ryZipFmaOtJLIjq2ICOJzMCi27hLRa4edTvT-Hndnqvh1tnt1JVnWNCiUpmHRGKWyMVP45qgjNleFwqEfW2QZrfgqkV7F6y-9qS52vCiqmrYqT8GUzfzOY840VQp6_npUW53W1v_Hu402jceJm-US2UFLYriLNmZwCOHreQremu-hxybmuteDOSfEquhonOPxSJ0OYPBysZgwXuCsIhj0JyLFGnlCZNikfA2A9T56a9293txbpuWCxb3QL-DpiYhwfWHKAk8EKUmTBOaZJS68eAnRAIVOILktbMECBi6UlwChTVw_Sb0DVBt-DsUhwr4UYRSkMQ8lKIZUMhLEIkqJFBCkhTKoI6eSNuUGj1y1xfigP0jKSmoUpEa11Cipo6vpP6MSjWMh9aWaRKq2KnDmzFQcwPgU6BVthp4Oh32gvK7mkJo9nC9gfPQ38nO01r1t0fZD5-kYrat-9WXa9wmqFdlYnKJV_lX08-xMr91vuanqrw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+status+update+for+exact+rational+mixed+integer+programming&rft.jtitle=Mathematical+programming&rft.au=Eifler%2C+Leon&rft.au=Gleixner%2C+Ambros&rft.date=2023-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=197&rft.issue=2&rft.spage=793&rft.epage=812&rft_id=info:doi/10.1007%2Fs10107-021-01749-5&rft.externalDocID=10_1007_s10107_021_01749_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |