A computational status update for exact rational mixed integer programming

The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 197; číslo 2; s. 793 - 812
Hlavní autoři: Eifler, Leon, Gleixner, Ambros
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2023
Springer
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 10.7x over the original framework and 2.9 times as many instances solved within a time limit of two hours.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-021-01749-5