Sequential hierarchical least-squares programming for prioritized non-linear optimal control

We present a sequential hierarchical least-squares programming solver with trust-region and hierarchical step-filter with application to prioritized discrete non-linear optimal control. It is based on a hierarchical step-filter which resolves each priority level of a non-linear hierarchical least-sq...

Full description

Saved in:
Bibliographic Details
Published in:Optimization methods & software Vol. 39; no. 5; pp. 1104 - 1142
Main Authors: Pfeiffer, Kai, Kheddar, Abderrahmane
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis 02.09.2024
Taylor & Francis Ltd
Subjects:
ISSN:1055-6788, 1029-4937
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a sequential hierarchical least-squares programming solver with trust-region and hierarchical step-filter with application to prioritized discrete non-linear optimal control. It is based on a hierarchical step-filter which resolves each priority level of a non-linear hierarchical least-squares programming via a globally convergent sequential quadratic programming step-filter. Leveraging a condition on the trust-region or the filter initialization, our hierarchical step-filter maintains this global convergence property. The hierarchical least-squares programming sub-problems are solved via a sparse reduced Hessian based interior point method. It leverages an efficient implementation of the turnback algorithm for the computation of nullspace bases for banded matrices. We propose a nullspace trust region adaptation method embedded within the sub-problem solver towards a comprehensive hierarchical step-filter. We demonstrate the computational efficiency of the hierarchical solver on typical test functions like the Rosenbrock and Himmelblau's functions, inverse kinematics problems and prioritized discrete non-linear optimal control.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1055-6788
1029-4937
DOI:10.1080/10556788.2024.2307467