Modular Termination for Second-Order Computation Rules and Application to Algebraic Effect Handlers

We present a new modular proof method of termination for second-order computation, and report its implementation SOL. The proof method is useful for proving termination of higher-order foundational calculi. To establish the method, we use a variation of semantic labelling translation and Blanqui...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Logical methods in computer science Ročník 18, Issue 2
Hlavní autor: Hamana, Makoto
Médium: Journal Article
Jazyk:angličtina
Vydáno: Logical Methods in Computer Science e.V 14.06.2022
Témata:
ISSN:1860-5974, 1860-5974
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a new modular proof method of termination for second-order computation, and report its implementation SOL. The proof method is useful for proving termination of higher-order foundational calculi. To establish the method, we use a variation of semantic labelling translation and Blanqui's General Schema: a syntactic criterion of strong normalisation. As an application, we apply this method to show termination of a variant of call-by-push-value calculus with algebraic effects and effect handlers. We also show that our tool SOL is effective to solve higher-order termination problems.
ISSN:1860-5974
1860-5974
DOI:10.46298/lmcs-18(2:18)2022