Numerical solution of backward heat conduction problems by a high order lattice-free finite difference method

We construct a high order finite difference method in which quadrature points do not need to have a lattice structure. In order to develop our method we show two tools using Fourier transform and Taylor expansion, respectively. On the other hand, the backward heat conduction problem is a typical exa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the Chinese Institute of Engineers Ročník 27; číslo 4; s. 611 - 620
Hlavný autor: Iijima, Kentaro
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis Group 01.06.2004
Predmet:
ISSN:0253-3839, 2158-7299
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We construct a high order finite difference method in which quadrature points do not need to have a lattice structure. In order to develop our method we show two tools using Fourier transform and Taylor expansion, respectively. On the other hand, the backward heat conduction problem is a typical example of ill-posed problems in the sense that the solution is unstable for errors of data. Our aim is creation of a meshless method which can be applied to the ill-posed problem. From numerical experiments we confirmed that our method is effective in solving two-dimensional backward heat conduction equations subject to the Dirichlet boundary condition.
ISSN:0253-3839
2158-7299
DOI:10.1080/02533839.2004.9670908