Numerical solution of backward heat conduction problems by a high order lattice-free finite difference method

We construct a high order finite difference method in which quadrature points do not need to have a lattice structure. In order to develop our method we show two tools using Fourier transform and Taylor expansion, respectively. On the other hand, the backward heat conduction problem is a typical exa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Chinese Institute of Engineers Jg. 27; H. 4; S. 611 - 620
1. Verfasser: Iijima, Kentaro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis Group 01.06.2004
Schlagworte:
ISSN:0253-3839, 2158-7299
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a high order finite difference method in which quadrature points do not need to have a lattice structure. In order to develop our method we show two tools using Fourier transform and Taylor expansion, respectively. On the other hand, the backward heat conduction problem is a typical example of ill-posed problems in the sense that the solution is unstable for errors of data. Our aim is creation of a meshless method which can be applied to the ill-posed problem. From numerical experiments we confirmed that our method is effective in solving two-dimensional backward heat conduction equations subject to the Dirichlet boundary condition.
ISSN:0253-3839
2158-7299
DOI:10.1080/02533839.2004.9670908