Twisted spectral geometry for the standard model

In noncommutative geometry, the spectral triple of a manifold does not generate bosonic fields, for fluctuations of the Dirac operator vanish. A Connes-Moscovici twist forces the commutative algebra to be multiplied by matrices. Keeping the space of spinors untouched, twisted-fluctuations then yield...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series Jg. 626; H. 1; S. 12044 - 12051
1. Verfasser: Martinetti, Pierre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 03.07.2015
Schlagworte:
ISSN:1742-6588, 1742-6596
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In noncommutative geometry, the spectral triple of a manifold does not generate bosonic fields, for fluctuations of the Dirac operator vanish. A Connes-Moscovici twist forces the commutative algebra to be multiplied by matrices. Keeping the space of spinors untouched, twisted-fluctuations then yield perturbations of the spin connection. Applied to the spectral triple of the Standard Model, a similar twist yields the scalar field needed to stabilize the vacuum and to make the computation of the Higgs mass compatible with its experimental value.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/626/1/012044