Twisted spectral geometry for the standard model

In noncommutative geometry, the spectral triple of a manifold does not generate bosonic fields, for fluctuations of the Dirac operator vanish. A Connes-Moscovici twist forces the commutative algebra to be multiplied by matrices. Keeping the space of spinors untouched, twisted-fluctuations then yield...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of physics. Conference series Ročník 626; číslo 1; s. 12044 - 12051
Hlavný autor: Martinetti, Pierre
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Bristol IOP Publishing 03.07.2015
Predmet:
ISSN:1742-6588, 1742-6596
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In noncommutative geometry, the spectral triple of a manifold does not generate bosonic fields, for fluctuations of the Dirac operator vanish. A Connes-Moscovici twist forces the commutative algebra to be multiplied by matrices. Keeping the space of spinors untouched, twisted-fluctuations then yield perturbations of the spin connection. Applied to the spectral triple of the Standard Model, a similar twist yields the scalar field needed to stabilize the vacuum and to make the computation of the Higgs mass compatible with its experimental value.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/626/1/012044