Infinite dimensional generalized Jacobian: Properties and calculus rules
The extension to infinite dimensional domains of Clarke's generalized Jacobian is the focus of this paper. First, a generalization of a Fabian–Preiss theorem to the infinite dimensional setting is obtained. As a consequence, a new formula relating the Clarke's generalized Jacobians corresp...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 344; číslo 1; s. 55 - 75 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA
Elsevier Inc
01.08.2008
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The extension to infinite dimensional domains of Clarke's generalized Jacobian is the focus of this paper. First, a generalization of a Fabian–Preiss theorem to the infinite dimensional setting is obtained. As a consequence, a new formula relating the Clarke's generalized Jacobians corresponding to finite dimensional spaces
K,
L with
K
⊆
L
is established. Furthermore, in the infinite dimensional case, basic properties pertaining the generalized Jacobian are developed and then an identification of this set-valued map is produced. Applications of these results in the form of chain rules including sum and product rules, and a computational formula for continuous selections are derived. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2008.02.044 |