Corporate ESG rating prediction based on XGBoost-SHAP interpretable machine learning model

The prediction of corporate ESG ratings is of paramount importance in augmenting the scientific rigor and precision of ESG investment decisions and steering corporate management of ESG-related risks. While machine learning methodologies have been extensively utilized in forecasting corporate behavio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 295; s. 128809
Hlavní autoři: Zhang, Jianfeng, Zhao, Zexin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2026
Témata:
ISSN:0957-4174
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The prediction of corporate ESG ratings is of paramount importance in augmenting the scientific rigor and precision of ESG investment decisions and steering corporate management of ESG-related risks. While machine learning methodologies have been extensively utilized in forecasting corporate behavior, their deployment in corporate ESG ratings remains relatively nascent and is often criticized for a lack of interpretability. This study develops a predictive model for corporate ESG ratings using an XGBoost algorithm enhanced with SHAP interpretability. The methodological framework incorporates SMOTE-ENN for handling class imbalance and a comprehensive optimization approach utilizing 3-fold cross-validation and randomized hyperparameter search. The model incorporates a comprehensive set of 15 indicators spanning four critical dimensions—financial performance, environmental impact, social responsibility, and corporate governance, using a dataset of Chinese A-share listed companies from 2013 to 2022. The model’s predictive efficacy is subsequently elucidated, revealing that the XGBoost-SHAP framework achieves an accuracy and precision rate of 91.0% and 90.7%, respectively, with an F1-score and AUC value of 90.1% and 0.977, outperforming comparative models. The analysis underscores the significant influence of financial and non-financial factors on ESG rating predictions, with financial attributes exerting a relatively more pronounced impact than individual non-financial metrics. Tailored to the diverse objectives of ESG investors, this research further delineates a level definition model and a risk identification model, achieving predictive accuracies of 92.4% and 97.7%, respectively. The insights from this study furnish ESG investors with a robust foundation for enhancing investment outcomes and offer strategic guidance for corporations aiming to elevate their ESG performance.
AbstractList The prediction of corporate ESG ratings is of paramount importance in augmenting the scientific rigor and precision of ESG investment decisions and steering corporate management of ESG-related risks. While machine learning methodologies have been extensively utilized in forecasting corporate behavior, their deployment in corporate ESG ratings remains relatively nascent and is often criticized for a lack of interpretability. This study develops a predictive model for corporate ESG ratings using an XGBoost algorithm enhanced with SHAP interpretability. The methodological framework incorporates SMOTE-ENN for handling class imbalance and a comprehensive optimization approach utilizing 3-fold cross-validation and randomized hyperparameter search. The model incorporates a comprehensive set of 15 indicators spanning four critical dimensions—financial performance, environmental impact, social responsibility, and corporate governance, using a dataset of Chinese A-share listed companies from 2013 to 2022. The model’s predictive efficacy is subsequently elucidated, revealing that the XGBoost-SHAP framework achieves an accuracy and precision rate of 91.0% and 90.7%, respectively, with an F1-score and AUC value of 90.1% and 0.977, outperforming comparative models. The analysis underscores the significant influence of financial and non-financial factors on ESG rating predictions, with financial attributes exerting a relatively more pronounced impact than individual non-financial metrics. Tailored to the diverse objectives of ESG investors, this research further delineates a level definition model and a risk identification model, achieving predictive accuracies of 92.4% and 97.7%, respectively. The insights from this study furnish ESG investors with a robust foundation for enhancing investment outcomes and offer strategic guidance for corporations aiming to elevate their ESG performance.
ArticleNumber 128809
Author Zhao, Zexin
Zhang, Jianfeng
Author_xml – sequence: 1
  givenname: Jianfeng
  orcidid: 0000-0003-4236-0242
  surname: Zhang
  fullname: Zhang, Jianfeng
  email: 527802384@qq.com
– sequence: 2
  givenname: Zexin
  surname: Zhao
  fullname: Zhao, Zexin
  email: 1012352975@qq.com
BookMark eNp9kE1LAzEQhnOoYFv9A57yB3ZNsp8BL7XUVigoVEG8hHzMaso2KUlQ_PfuUk8eepoXZp5h5pmhifMOELqhJKeE1rf7HOK3zBlhVU5Z2xI-QVPCqyYraVNeolmMe0JoQ0gzRe9LH44-yAR4tVvjIVj3gY8BjNXJeoeVjGDwEN7W997HlO02i2dsXYIwTCWpesAHqT-tA9yDDG7kD95Af4UuOtlHuP6rc_T6sHpZbrLt0_pxudhmumjKlLGWFIUB1fGuYbxui1rVStVSccU7zgpT0YqPbQ6FUoa0HSNSVR0DZgxvymKO2tNeHXyMATqhbZLj8SlI2wtKxOhF7MXoRYxexMnLgLJ_6DHYgww_56G7EwTDU18WgojagtODsgA6CePtOfwXiVOBzg
CitedBy_id crossref_primary_10_1016_j_dajour_2025_100626
Cites_doi 10.3390/su16166979
10.1016/j.patrec.2005.10.010
10.1093/rof/rfac033
10.1145/2907070
10.1080/13547860.2023.2273017
10.1016/j.procs.2022.01.143
10.1145/2939672.2939785
10.3390/app13042272
10.1023/A:1010920819831
10.3390/s24041230
10.1108/K-12-2021-1289
10.1111/ecpo.12283
10.1007/s10203-021-00364-5
10.1051/e3sconf/202021402042
10.1002/for.3201
10.3390/math10244679
10.1002/csr.2746
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.eswa.2025.128809
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_128809
S0957417425024273
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ABUFD
ACDAQ
ACGFS
ACHRH
ACLOT
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c374t-28033debf9f7296836b6bb6ab9b9f923d5159ebf99e3bbd08f20ab5f2e2dd9743
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001529393500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Thu Nov 27 00:48:44 EST 2025
Tue Nov 18 20:42:36 EST 2025
Wed Dec 10 14:22:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords XGBoost algorithm
SHAP
ESG rating prediction
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-28033debf9f7296836b6bb6ab9b9f923d5159ebf99e3bbd08f20ab5f2e2dd9743
ORCID 0000-0003-4236-0242
OpenAccessLink https://dx.doi.org/10.1016/j.eswa.2025.128809
ParticipantIDs crossref_citationtrail_10_1016_j_eswa_2025_128809
crossref_primary_10_1016_j_eswa_2025_128809
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128809
PublicationCentury 2000
PublicationDate 2026-01-01
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Qi, Sun, Zheng, Qi (b0125) 2023; 45
Hand, Till (b0080) 2001; 45
Javier, De Mandojana Natalia, Raquel, Ivan (b0090) 2023; 26
Yan, Guanhua, Li, Liang (b0150) 2024; 1–9
Dong, Xue, Chen (b0070) 2023; 6
Kui, Meixuan, Jingyi, Xiaomeng, Gang (b0105) 2022; 199
Chen Tianqi & Guestrin Carlos (2016). XGBoost: A scalable tree boosting system. CoRR, abs/1603.02754.
Yuxiao (b0165) 2023; 20
Al, Khedr, Magdi, Sakeena (b0015) 2023; 13
Branco, Torgo, Ribeiro (b0030) 2016; 49
David, Wang, Angel, Luo (b0065) 2024; 31
Zedda (b0170) 2024; 70
Aggarwal, Banerjee (b0010) 2024; 44
D’Amato, D’Ecclesia, Levantesi (b0050) 2021; 44
Lei, Ke, Huang, Sha (b0110) 2020; 214
Yi (b0155) 2023; 14
Mo, Zhang, Tan, Zhang, Guo (b0120) 2024
Aaron, Rodolphe, David, Samuel (b0005) 2016; 8
Wenlong (b0145) 2023; 30
Benyan, Ziqi, Yan (b0020) 2023; 227
Mehdary, Chehri, Jakimi, Saadane (b0115) 2024; 24
Jujie, Qian, Ying (b0095) 2023; 52
Fawcett (b0075) 2006; 27
Yicheng, Lianying, Yanna (b0160) 2019; 1325
David, Wang, Angel, Amjad (b0060) 2025; 30
Hongtao, Honghui, Wenqi, Huiying (b0085) 2023; 16
Berg, Kölbel, Rigobon (b0025) 2022; 26
Chowdhury, Mohammad Abdullah, Azad, Sulong, Nazmul Islam (b0045) 2023
Sun, Zeng, Ying, Yue, Xipu (b0130) 2024; 36
Jun, Wei, Zhuo, Dong (b0100) 2022
Zhuang, Hong (b0175) 2013; 08
Chen, Zhan, Li (b0040) 2020
D’Amato, D’Ecclesia, Levantesi (b0055) 2021; 19
Wang, Wang, Liu, Zhang, Jingde, Ma (b0140) 2024; 16
Surjeet, Bijeta, Magdalena, Carmen, Claudia (b0135) 2022; 10
Aggarwal (10.1016/j.eswa.2025.128809_b0010) 2024; 44
David (10.1016/j.eswa.2025.128809_b0060) 2025; 30
Chen (10.1016/j.eswa.2025.128809_b0040) 2020
Hongtao (10.1016/j.eswa.2025.128809_b0085) 2023; 16
D’Amato (10.1016/j.eswa.2025.128809_b0050) 2021; 44
Benyan (10.1016/j.eswa.2025.128809_b0020) 2023; 227
Dong (10.1016/j.eswa.2025.128809_b0070) 2023; 6
Wang (10.1016/j.eswa.2025.128809_b0140) 2024; 16
Jun (10.1016/j.eswa.2025.128809_b0100) 2022
Kui (10.1016/j.eswa.2025.128809_b0105) 2022; 199
Yi (10.1016/j.eswa.2025.128809_b0155) 2023; 14
Al (10.1016/j.eswa.2025.128809_b0015) 2023; 13
Mo (10.1016/j.eswa.2025.128809_b0120) 2024
Sun (10.1016/j.eswa.2025.128809_b0130) 2024; 36
D’Amato (10.1016/j.eswa.2025.128809_b0055) 2021; 19
Surjeet (10.1016/j.eswa.2025.128809_b0135) 2022; 10
Qi (10.1016/j.eswa.2025.128809_b0125) 2023; 45
10.1016/j.eswa.2025.128809_b0035
Hand (10.1016/j.eswa.2025.128809_b0080) 2001; 45
Jujie (10.1016/j.eswa.2025.128809_b0095) 2023; 52
Lei (10.1016/j.eswa.2025.128809_b0110) 2020; 214
Mehdary (10.1016/j.eswa.2025.128809_b0115) 2024; 24
David (10.1016/j.eswa.2025.128809_b0065) 2024; 31
Fawcett (10.1016/j.eswa.2025.128809_b0075) 2006; 27
Wenlong (10.1016/j.eswa.2025.128809_b0145) 2023; 30
Branco (10.1016/j.eswa.2025.128809_b0030) 2016; 49
Yuxiao (10.1016/j.eswa.2025.128809_b0165) 2023; 20
Aaron (10.1016/j.eswa.2025.128809_b0005) 2016; 8
Yan (10.1016/j.eswa.2025.128809_b0150) 2024; 1–9
Chowdhury (10.1016/j.eswa.2025.128809_b0045) 2023
Zhuang (10.1016/j.eswa.2025.128809_b0175) 2013; 08
Berg (10.1016/j.eswa.2025.128809_b0025) 2022; 26
Zedda (10.1016/j.eswa.2025.128809_b0170) 2024; 70
Javier (10.1016/j.eswa.2025.128809_b0090) 2023; 26
Yicheng (10.1016/j.eswa.2025.128809_b0160) 2019; 1325
References_xml – volume: 16
  start-page: 6979
  year: 2024
  ident: b0140
  article-title: A novel stacked generalization ensemble-based hybrid SGM-BRR model for ESG score prediction
  publication-title: Sustainability
– volume: 31
  start-page: 3468
  year: 2024
  end-page: 3486
  ident: b0065
  article-title: China's ESG scorecard: A predictive machine learning model
  publication-title: Corporate Social Responsibility and Environmental Management
– volume: 1325
  year: 2019
  ident: b0160
  article-title: Harsanyi-transformation oriented default risk prediction based on FA-XGBoost in P2P network loan
  publication-title: Journal of Physics Conference Series
– start-page: 1
  year: 2023
  end-page: 25
  ident: b0045
  article-title: Environmental, social and governance (ESG) rating prediction using machine learning approaches
  publication-title: Annals of Operations Research
– year: 2020
  ident: b0040
  article-title: Research on credit card transaction fraud prediction based on XGBoost algorithm model
  publication-title: Application Research of Computers
– reference: Chen Tianqi & Guestrin Carlos (2016). XGBoost: A scalable tree boosting system. CoRR, abs/1603.02754.
– volume: 70
  year: 2024
  ident: b0170
  article-title: Credit scoring: Does XGboost outperform logistic regression? A test on Italian SMEs
  publication-title: Research in International Business and Finance
– start-page: 2022
  year: 2022
  ident: b0100
  article-title: Credit debt default risk assessment based on the XGBoost algorithm: An empirical study from China
  publication-title: Wireless Communications and Mobile Computing
– volume: 26
  start-page: 2
  year: 2023
  end-page: 10
  ident: b0090
  article-title: Connecting the sustainable development goals to firm-level sustainability and ESG factors: The need for double materiality
  publication-title: Business Research Quarterly
– volume: 24
  year: 2024
  ident: b0115
  article-title: Hyperparameter optimization with genetic algorithms and XGBoost: A step forward in smart grid fraud detection
  publication-title: Sensors
– volume: 30
  start-page: 779
  year: 2023
  end-page: 786
  ident: b0145
  article-title: Default prediction of internet finance users based on imbalance-XGBoost
  publication-title: Tehnički vjesnik
– volume: 214
  year: 2020
  ident: b0110
  article-title: An Xgboost based system for financial fraud detection
  publication-title: E3S Web of Conferences
– volume: 45
  start-page: 1934
  year: 2023
  end-page: 1943
  ident: b0125
  article-title: Prediction and analysis model for ground peak acceleration based on XGBoost and SHAP.Chinese
  publication-title: Journal of Geotechnical Engineering
– volume: 13
  start-page: 2272
  year: 2023
  ident: b0015
  article-title: A powerful predicting model for financial statement fraud based on optimized XGBoost ensemble learning technique
  publication-title: Applied Sciences
– volume: 199
  start-page: 1128
  year: 2022
  end-page: 1135
  ident: b0105
  article-title: Research on personal credit risk evaluation based on XGBoost
  publication-title: Procedia Computer Science
– volume: 44
  start-page: 1
  year: 2021
  end-page: 24
  ident: b0050
  article-title: Fundamental ratios as predictors of ESG scores: A machine learning approach
  publication-title: Decisions in Economics and Finance
– volume: 30
  start-page: 128
  year: 2025
  end-page: 157
  ident: b0060
  article-title: ESG scoring and forecasting in China: advancing sustainable business with multidimensional modeling
  publication-title: Journal of the Asia Pacific Economy
– volume: 20
  start-page: 184
  year: 2023
  end-page: 188
  ident: b0165
  article-title: The impact of digital financial inclusion on corporate environmental performance
  publication-title: Statistics & Decision
– volume: 26
  start-page: 1315
  year: 2022
  end-page: 1344
  ident: b0025
  article-title: Aggregate confusion: The divergence of ESG ratings
  publication-title: Review of Finance
– volume: 49
  start-page: 1
  year: 2016
  end-page: 50
  ident: b0030
  article-title: A Survey of Predictive Modeling on Imbalanced Domains
  publication-title: ACM Computing Surveys (CSUR)
– volume: 36
  start-page: 1110
  year: 2024
  end-page: 1136
  ident: b0130
  article-title: An intelligent detecting model for financial frauds in Chinese A-share market
  publication-title: Economics & Politics
– volume: 10
  start-page: 4679
  year: 2022
  ident: b0135
  article-title: Predicting fraud in financial payment services through optimized hyper-parameter-tuned XGBoost model
  publication-title: Mathematics
– volume: 14
  start-page: 2354
  year: 2023
  end-page: 2364
  ident: b0155
  article-title: Design of XGBoost prediction model for financial operation fraud of listed companies
  publication-title: International Journal of System Assurance Engineering and Management
– volume: 45
  start-page: 171
  year: 2001
  end-page: 186
  ident: b0080
  article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems
  publication-title: Machine Learning
– start-page: 1
  year: 2024
  end-page: 51
  ident: b0120
  article-title: Reassessment of corporate credit risk identification: novel discoveries from integrated machine learning models
  publication-title: Computational Economics
– volume: 16
  year: 2023
  ident: b0085
  article-title: ESG in China: A review of practice and research, and future research avenues
  publication-title: China Journal of Accounting Research
– volume: 44
  start-page: 339
  year: 2024
  end-page: 355
  ident: b0010
  article-title: Forecasting of S&P 500 ESG index by using CEEMDAN and LSTM approach
  publication-title: Journal of Forecasting
– volume: 1–9
  year: 2024
  ident: b0150
  article-title: Enterprise ESG indicator prediction model integrated with richness coordination technology
  publication-title: Journal of Computer Applications
– volume: 52
  start-page: 4158
  year: 2023
  end-page: 4177
  ident: b0095
  article-title: An XGBoost-based multivariate deep learning framework for stock index futures price forecasting
  publication-title: Kybernetes
– volume: 08
  start-page: 175
  year: 2013
  end-page: 176
  ident: b0175
  article-title: Research on the three-spiral measurement of government-industry-university-research in China based on patent data – also on the role of government in industry-university-research cooperation
  publication-title: Journal of Management World
– volume: 8
  start-page: 1597
  year: 2016
  end-page: 1614
  ident: b0005
  article-title: Do ratings of firms converge? Implications for managers, investors and strategy researchers
  publication-title: Strategic Management Journal
– volume: 227
  year: 2023
  ident: b0020
  article-title: The measurement and early warning of daily financial stability index based on XGBoost and SHAP: Evidence from China
  publication-title: Expert Systems with Applications
– volume: 19
  start-page: 1
  year: 2021
  end-page: 27
  ident: b0055
  article-title: ESG score prediction through random forest algorithm
  publication-title: Computational Management Science
– volume: 6
  year: 2023
  ident: b0070
  article-title: Analysis and comparison of loan default prediction models based on XGBoost and LightGBM algorithm
  publication-title: Academic Journal of Computing & Information Science
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: b0075
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognition Letters
– volume: 14
  start-page: 2354
  issue: 6
  year: 2023
  ident: 10.1016/j.eswa.2025.128809_b0155
  article-title: Design of XGBoost prediction model for financial operation fraud of listed companies
  publication-title: International Journal of System Assurance Engineering and Management
– volume: 16
  start-page: 6979
  issue: 16
  year: 2024
  ident: 10.1016/j.eswa.2025.128809_b0140
  article-title: A novel stacked generalization ensemble-based hybrid SGM-BRR model for ESG score prediction
  publication-title: Sustainability
  doi: 10.3390/su16166979
– volume: 19
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2025.128809_b0055
  article-title: ESG score prediction through random forest algorithm
  publication-title: Computational Management Science
– start-page: 2022
  year: 2022
  ident: 10.1016/j.eswa.2025.128809_b0100
  article-title: Credit debt default risk assessment based on the XGBoost algorithm: An empirical study from China
  publication-title: Wireless Communications and Mobile Computing
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.eswa.2025.128809_b0075
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.10.010
– volume: 30
  start-page: 779
  issue: 3
  year: 2023
  ident: 10.1016/j.eswa.2025.128809_b0145
  article-title: Default prediction of internet finance users based on imbalance-XGBoost
  publication-title: Tehnički vjesnik
– volume: 227
  year: 2023
  ident: 10.1016/j.eswa.2025.128809_b0020
  article-title: The measurement and early warning of daily financial stability index based on XGBoost and SHAP: Evidence from China
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 1315
  issue: 6
  year: 2022
  ident: 10.1016/j.eswa.2025.128809_b0025
  article-title: Aggregate confusion: The divergence of ESG ratings
  publication-title: Review of Finance
  doi: 10.1093/rof/rfac033
– start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.128809_b0045
  article-title: Environmental, social and governance (ESG) rating prediction using machine learning approaches
  publication-title: Annals of Operations Research
– volume: 49
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2025.128809_b0030
  article-title: A Survey of Predictive Modeling on Imbalanced Domains
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/2907070
– volume: 30
  start-page: 128
  issue: 1
  year: 2025
  ident: 10.1016/j.eswa.2025.128809_b0060
  article-title: ESG scoring and forecasting in China: advancing sustainable business with multidimensional modeling
  publication-title: Journal of the Asia Pacific Economy
  doi: 10.1080/13547860.2023.2273017
– start-page: 1
  year: 2024
  ident: 10.1016/j.eswa.2025.128809_b0120
  article-title: Reassessment of corporate credit risk identification: novel discoveries from integrated machine learning models
  publication-title: Computational Economics
– volume: 26
  start-page: 2
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.128809_b0090
  article-title: Connecting the sustainable development goals to firm-level sustainability and ESG factors: The need for double materiality
  publication-title: Business Research Quarterly
– volume: 199
  start-page: 1128
  year: 2022
  ident: 10.1016/j.eswa.2025.128809_b0105
  article-title: Research on personal credit risk evaluation based on XGBoost
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2022.01.143
– ident: 10.1016/j.eswa.2025.128809_b0035
  doi: 10.1145/2939672.2939785
– volume: 13
  start-page: 2272
  issue: 4
  year: 2023
  ident: 10.1016/j.eswa.2025.128809_b0015
  article-title: A powerful predicting model for financial statement fraud based on optimized XGBoost ensemble learning technique
  publication-title: Applied Sciences
  doi: 10.3390/app13042272
– volume: 1–9
  year: 2024
  ident: 10.1016/j.eswa.2025.128809_b0150
  article-title: Enterprise ESG indicator prediction model integrated with richness coordination technology
  publication-title: Journal of Computer Applications
– volume: 45
  start-page: 171
  issue: 2
  year: 2001
  ident: 10.1016/j.eswa.2025.128809_b0080
  article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems
  publication-title: Machine Learning
  doi: 10.1023/A:1010920819831
– volume: 70
  issue: PB
  year: 2024
  ident: 10.1016/j.eswa.2025.128809_b0170
  article-title: Credit scoring: Does XGboost outperform logistic regression? A test on Italian SMEs
  publication-title: Research in International Business and Finance
– volume: 24
  issue: 4
  year: 2024
  ident: 10.1016/j.eswa.2025.128809_b0115
  article-title: Hyperparameter optimization with genetic algorithms and XGBoost: A step forward in smart grid fraud detection
  publication-title: Sensors
  doi: 10.3390/s24041230
– year: 2020
  ident: 10.1016/j.eswa.2025.128809_b0040
  article-title: Research on credit card transaction fraud prediction based on XGBoost algorithm model
  publication-title: Application Research of Computers
– volume: 1325
  year: 2019
  ident: 10.1016/j.eswa.2025.128809_b0160
  article-title: Harsanyi-transformation oriented default risk prediction based on FA-XGBoost in P2P network loan
  publication-title: Journal of Physics Conference Series
– volume: 8
  start-page: 1597
  year: 2016
  ident: 10.1016/j.eswa.2025.128809_b0005
  article-title: Do ratings of firms converge? Implications for managers, investors and strategy researchers
  publication-title: Strategic Management Journal
– volume: 52
  start-page: 4158
  issue: 10
  year: 2023
  ident: 10.1016/j.eswa.2025.128809_b0095
  article-title: An XGBoost-based multivariate deep learning framework for stock index futures price forecasting
  publication-title: Kybernetes
  doi: 10.1108/K-12-2021-1289
– volume: 08
  start-page: 175
  year: 2013
  ident: 10.1016/j.eswa.2025.128809_b0175
  article-title: Research on the three-spiral measurement of government-industry-university-research in China based on patent data – also on the role of government in industry-university-research cooperation
  publication-title: Journal of Management World
– volume: 36
  start-page: 1110
  issue: 2
  year: 2024
  ident: 10.1016/j.eswa.2025.128809_b0130
  article-title: An intelligent detecting model for financial frauds in Chinese A-share market
  publication-title: Economics & Politics
  doi: 10.1111/ecpo.12283
– volume: 16
  issue: 4
  year: 2023
  ident: 10.1016/j.eswa.2025.128809_b0085
  article-title: ESG in China: A review of practice and research, and future research avenues
  publication-title: China Journal of Accounting Research
– volume: 44
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2025.128809_b0050
  article-title: Fundamental ratios as predictors of ESG scores: A machine learning approach
  publication-title: Decisions in Economics and Finance
  doi: 10.1007/s10203-021-00364-5
– volume: 214
  year: 2020
  ident: 10.1016/j.eswa.2025.128809_b0110
  article-title: An Xgboost based system for financial fraud detection
  publication-title: E3S Web of Conferences
  doi: 10.1051/e3sconf/202021402042
– volume: 44
  start-page: 339
  issue: 2
  year: 2024
  ident: 10.1016/j.eswa.2025.128809_b0010
  article-title: Forecasting of S&P 500 ESG index by using CEEMDAN and LSTM approach
  publication-title: Journal of Forecasting
  doi: 10.1002/for.3201
– volume: 20
  start-page: 184
  year: 2023
  ident: 10.1016/j.eswa.2025.128809_b0165
  article-title: The impact of digital financial inclusion on corporate environmental performance
  publication-title: Statistics & Decision
– volume: 6
  issue: 9
  year: 2023
  ident: 10.1016/j.eswa.2025.128809_b0070
  article-title: Analysis and comparison of loan default prediction models based on XGBoost and LightGBM algorithm
  publication-title: Academic Journal of Computing & Information Science
– volume: 10
  start-page: 4679
  issue: 24
  year: 2022
  ident: 10.1016/j.eswa.2025.128809_b0135
  article-title: Predicting fraud in financial payment services through optimized hyper-parameter-tuned XGBoost model
  publication-title: Mathematics
  doi: 10.3390/math10244679
– volume: 45
  start-page: 1934
  issue: 09
  year: 2023
  ident: 10.1016/j.eswa.2025.128809_b0125
  article-title: Prediction and analysis model for ground peak acceleration based on XGBoost and SHAP.Chinese
  publication-title: Journal of Geotechnical Engineering
– volume: 31
  start-page: 3468
  issue: 4
  year: 2024
  ident: 10.1016/j.eswa.2025.128809_b0065
  article-title: China's ESG scorecard: A predictive machine learning model
  publication-title: Corporate Social Responsibility and Environmental Management
  doi: 10.1002/csr.2746
SSID ssj0017007
Score 2.4966626
Snippet The prediction of corporate ESG ratings is of paramount importance in augmenting the scientific rigor and precision of ESG investment decisions and steering...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 128809
SubjectTerms ESG rating prediction
Machine learning
SHAP
XGBoost algorithm
Title Corporate ESG rating prediction based on XGBoost-SHAP interpretable machine learning model
URI https://dx.doi.org/10.1016/j.eswa.2025.128809
Volume 295
WOSCitedRecordID wos001529393500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3LTxQxGMAbBQ9eQHwERE0P3jZDdjuPtsfVrCAhhGTRbLhMti8DgVnCjrp_vt_Xx-wChqiJl8lkZtvZ9Ne0X78nIe_L0sJG4tCsXpmsmAq071Yiq-Qg14YJx7254OsRPz4Wk4k8idXs576cAG8asVjI6_-KGp4BbAyd_QvcXafwAO4BOlwBO1z_CHzKTWx7o_F-DwH7eHM0yHjWuG8ZtBFM9j_MZvM2Gx8MT3zaiOB8iKFUV97F0qaaEt9CwZxbWnxMkdzGRNApRG7FGH5PIX0I89DZuE-GF15Le2YXMfl31D2wu7qHLihm6YEUNIs8Kwah-E5aZFkopXlvwQ66g4s9O_-JWaBYuQcbpujL5fbUOQ2OsWPsF6Q2ECx4_pisM15KWI7Xh59Hk8POesT7IUw-_ZEYLBX8-u5-6fcCyYqQcfqMbMTTAR0GqlvkkW2ek81UeYPGhfgFOesgU4BMA2S6hEw9ZAo3q5DpLcg0QqYJMvWQX5Ivn0anHw-yWCUj0zkv2gzLi-XGKicdHJQqkVeqUqqaKqmkA_HdoMSKr6XNlTJ94Vh_qkrHLDMGTpP5K7LWzBq7TaizRheOa6NzW2hmFbOGCzNFP1QNcuEOGaShqnVMIY-VTC7r5Ct4UePw1ji8dRjeHdLr2lyHBCoP_rpMBOooAgbRroYJ80C71__Ybpc8Xc7rN2Stvflu35In-kd7Pr95F-fVLxeOgsI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corporate+ESG+rating+prediction+based+on+XGBoost-SHAP+interpretable+machine+learning+model&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Jianfeng&rft.au=Zhao%2C+Zexin&rft.date=2026-01-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=295&rft_id=info:doi/10.1016%2Fj.eswa.2025.128809&rft.externalDocID=S0957417425024273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon