Multi-objective optimisation of an interactive buildings-vehicles energy sharing network with high energy flexibility using the Pareto archive NSGA-II algorithm

Multi-objective optimisation of interactive buildings-vehicles energy sharing network. [Display omitted] •A synergic buildings-vehicles energy sharing network with multiple interactions.•Energy flexibility exploitation with the advanced grid-responsive control strategy.•Techno-economic and multiple...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy conversion and management Ročník 218; s. 113017
Hlavní autoři: Zhou, Yuekuan, Cao, Sunliang, Kosonen, Risto, Hamdy, Mohamed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 15.08.2020
Elsevier Science Ltd
Témata:
ISSN:0196-8904, 1879-2227
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multi-objective optimisation of interactive buildings-vehicles energy sharing network. [Display omitted] •A synergic buildings-vehicles energy sharing network with multiple interactions.•Energy flexibility exploitation with the advanced grid-responsive control strategy.•Techno-economic and multiple criteria with cost, emission and energy flexibility.•Multi-objective optimization using the Pareto archive NSGA-II algorithm.•Optimal solutions to energy-related conflicts for multi-criteria decision-makers. Systematic interactions between buildings, vehicles, and renewables can increase eco-economic viability on a neighbourhood scale. In this study, an interactive buildings-vehicles energy sharing network with multidirectional energy interactions was formulated for energy interactions and integrations together with a grid-responsive strategy for the management of off-peak renewable energy and grid electricity. Energy flexibility indicators (e.g., off-peak surplus renewable shifted ratio and off-peak grid shifted ratio) were introduced, developed, and implemented in an interactive buildings-vehicles energy sharing network for the energy flexibility assessment. Several energy-related conflicts, such as energy congestion contradiction and energy-related economic and environmental conflicts, were presented and discussed together with effective solutions provided to decision-makers for optimal design and robust operation. To reach a trade-off between energy-related conflicts, multi-objective optimisation was conducted, and implemented with an advanced multi-objective optimisation algorithm (called Pareto archive NSGA-II). The research results show that the formulated interactive buildings-vehicles energy sharing network demonstrates greater robustness and competitiveness than the conventional isolated system in terms of cost, emissions, and energy flexibility. Regarding multiple energy-related conflicts in the formulated interactive energy sharing network, the results show that multi-objective optimisation is able to decrease the equivalent CO2 emissions of the buildings-vehicles energy system by 7.5%, from 147.4 to 136.4 kg/m2.a, and reduce the import cost from the electric grid by 8.5%, from 212.7 to 194.6 HK$/m2.a, together with a high energy flexibility: a maximum of 11.03% (1.5% in a conventional isolated system) of the off-peak grid electricity can be stored by the electrical storages and a maximum of 52.48% (33.6% in the conventional isolated system) of the off-peak surplus renewable electricity can be shifted to peak period. This study formulates an interactive energy sharing network between buildings and vehicles, together with quantifiable energy flexibility assessment criteria and effective solutions for dealing with multiple energy-related conflicts, which are critical for interactive buildings-vehicles energy sharing networks with high energy flexibilities in smart cities.
AbstractList Multi-objective optimisation of interactive buildings-vehicles energy sharing network. [Display omitted] •A synergic buildings-vehicles energy sharing network with multiple interactions.•Energy flexibility exploitation with the advanced grid-responsive control strategy.•Techno-economic and multiple criteria with cost, emission and energy flexibility.•Multi-objective optimization using the Pareto archive NSGA-II algorithm.•Optimal solutions to energy-related conflicts for multi-criteria decision-makers. Systematic interactions between buildings, vehicles, and renewables can increase eco-economic viability on a neighbourhood scale. In this study, an interactive buildings-vehicles energy sharing network with multidirectional energy interactions was formulated for energy interactions and integrations together with a grid-responsive strategy for the management of off-peak renewable energy and grid electricity. Energy flexibility indicators (e.g., off-peak surplus renewable shifted ratio and off-peak grid shifted ratio) were introduced, developed, and implemented in an interactive buildings-vehicles energy sharing network for the energy flexibility assessment. Several energy-related conflicts, such as energy congestion contradiction and energy-related economic and environmental conflicts, were presented and discussed together with effective solutions provided to decision-makers for optimal design and robust operation. To reach a trade-off between energy-related conflicts, multi-objective optimisation was conducted, and implemented with an advanced multi-objective optimisation algorithm (called Pareto archive NSGA-II). The research results show that the formulated interactive buildings-vehicles energy sharing network demonstrates greater robustness and competitiveness than the conventional isolated system in terms of cost, emissions, and energy flexibility. Regarding multiple energy-related conflicts in the formulated interactive energy sharing network, the results show that multi-objective optimisation is able to decrease the equivalent CO2 emissions of the buildings-vehicles energy system by 7.5%, from 147.4 to 136.4 kg/m2.a, and reduce the import cost from the electric grid by 8.5%, from 212.7 to 194.6 HK$/m2.a, together with a high energy flexibility: a maximum of 11.03% (1.5% in a conventional isolated system) of the off-peak grid electricity can be stored by the electrical storages and a maximum of 52.48% (33.6% in the conventional isolated system) of the off-peak surplus renewable electricity can be shifted to peak period. This study formulates an interactive energy sharing network between buildings and vehicles, together with quantifiable energy flexibility assessment criteria and effective solutions for dealing with multiple energy-related conflicts, which are critical for interactive buildings-vehicles energy sharing networks with high energy flexibilities in smart cities.
Systematic interactions between buildings, vehicles, and renewables can increase eco-economic viability on a neighbourhood scale. In this study, an interactive buildings-vehicles energy sharing network with multidirectional energy interactions was formulated for energy interactions and integrations together with a grid-responsive strategy for the management of off-peak renewable energy and grid electricity. Energy flexibility indicators (e.g., off-peak surplus renewable shifted ratio and off-peak grid shifted ratio) were introduced, developed, and implemented in an interactive buildings-vehicles energy sharing network for the energy flexibility assessment. Several energy-related conflicts, such as energy congestion contradiction and energy-related economic and environmental conflicts, were presented and discussed together with effective solutions provided to decision-makers for optimal design and robust operation. To reach a trade-off between energy-related conflicts, multi-objective optimisation was conducted, and implemented with an advanced multi-objective optimisation algorithm (called Pareto archive NSGA-II). The research results show that the formulated interactive buildings-vehicles energy sharing network demonstrates greater robustness and competitiveness than the conventional isolated system in terms of cost, emissions, and energy flexibility. Regarding multiple energy-related conflicts in the formulated interactive energy sharing network, the results show that multi-objective optimisation is able to decrease the equivalent CO₂ emissions of the buildings-vehicles energy system by 7.5%, from 147.4 to 136.4 kg/m².a, and reduce the import cost from the electric grid by 8.5%, from 212.7 to 194.6 HK$/m².a, together with a high energy flexibility: a maximum of 11.03% (1.5% in a conventional isolated system) of the off-peak grid electricity can be stored by the electrical storages and a maximum of 52.48% (33.6% in the conventional isolated system) of the off-peak surplus renewable electricity can be shifted to peak period. This study formulates an interactive energy sharing network between buildings and vehicles, together with quantifiable energy flexibility assessment criteria and effective solutions for dealing with multiple energy-related conflicts, which are critical for interactive buildings-vehicles energy sharing networks with high energy flexibilities in smart cities.
Systematic interactions between buildings, vehicles, and renewables can increase eco-economic viability on a neighbourhood scale. In this study, an interactive buildings-vehicles energy sharing network with multidirectional energy interactions was formulated for energy interactions and integrations together with a grid-responsive strategy for the management of off-peak renewable energy and grid electricity. Energy flexibility indicators (e.g., off-peak surplus renewable shifted ratio and off-peak grid shifted ratio) were introduced, developed, and implemented in an interactive buildings-vehicles energy sharing network for the energy flexibility assessment. Several energy-related conflicts, such as energy congestion contradiction and energy-related economic and environmental conflicts, were presented and discussed together with effective solutions provided to decision-makers for optimal design and robust operation. To reach a trade-off between energy-related conflicts, multi-objective optimisation was conducted, and implemented with an advanced multi-objective optimisation algorithm (called Pareto archive NSGA-II). The research results show that the formulated interactive buildings-vehicles energy sharing network demonstrates greater robustness and competitiveness than the conventional isolated system in terms of cost, emissions, and energy flexibility. Regarding multiple energy-related conflicts in the formulated interactive energy sharing network, the results show that multi-objective optimisation is able to decrease the equivalent CO2 emissions of the buildings-vehicles energy system by 7.5%, from 147.4 to 136.4 kg/m2.a, and reduce the import cost from the electric grid by 8.5%, from 212.7 to 194.6 HK$/m2.a, together with a high energy flexibility: a maximum of 11.03% (1.5% in a conventional isolated system) of the off-peak grid electricity can be stored by the electrical storages and a maximum of 52.48% (33.6% in the conventional isolated system) of the off-peak surplus renewable electricity can be shifted to peak period. This study formulates an interactive energy sharing network between buildings and vehicles, together with quantifiable energy flexibility assessment criteria and effective solutions for dealing with multiple energy-related conflicts, which are critical for interactive buildings-vehicles energy sharing networks with high energy flexibilities in smart cities.
ArticleNumber 113017
Author Zhou, Yuekuan
Cao, Sunliang
Hamdy, Mohamed
Kosonen, Risto
Author_xml – sequence: 1
  givenname: Yuekuan
  orcidid: 0000-0003-2038-0314
  surname: Zhou
  fullname: Zhou, Yuekuan
  organization: Renewable Energy Research Group (RERG), Department of Building Services Engineering, Faculty of Construction and Environment, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
– sequence: 2
  givenname: Sunliang
  orcidid: 0000-0001-9589-8914
  surname: Cao
  fullname: Cao, Sunliang
  email: sunliang.cao@polyu.edu.hk, caosunliang@msn.com
  organization: Renewable Energy Research Group (RERG), Department of Building Services Engineering, Faculty of Construction and Environment, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
– sequence: 3
  givenname: Risto
  surname: Kosonen
  fullname: Kosonen, Risto
  organization: Department of Mechanical Engineering, School of Engineering, Aalto University, Finland
– sequence: 4
  givenname: Mohamed
  surname: Hamdy
  fullname: Hamdy, Mohamed
  organization: Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway
BookMark eNqFkc1u1DAUhSNUJKaFV0CW2LDJ1I49cSKxoKqgHan8SMDacpzryR0y9mA7U-ZteFQ8hG666crWPd85urrnvDhz3kFRvGZ0ySirL7dLcMa7nXbLilZ5yDhl8lmxYI1sy6qq5FmxoKyty6al4kVxHuOWUspXtF4Ufz5NY8LSd1swCQ9A_D7hDqNO6B3xlmhH0CUIepa7Ccce3SaWBxjQjBAJOAibI4mDDlkgDtK9Dz_JPaaBDLgZHgA7wm_scMR0JFM8oWkA8lUHSJ7oYIZT_udvN1flek30uPEhJ-xeFs-tHiO8-v9eFD8-fvh-fVvefblZX1_dlYZLnspea2Cy62oKlue_1HLVWWu4sIZ2zIo2j7QRts2K7hopRNu3zDZcdGLVW35RvJ1z98H_miAmla9gYBy1Az9FVYm2qSTjjGf0zSN066fg8naZ4q2QreQiU_VMmeBjDGDVPuBOh6NiVJ2KU1v1UJw6Fafm4rLx3SOjwfSvjxQ0jk_b3892yNc6IAQVDWYSegy5Y9V7fCriL-Mlv-o
CitedBy_id crossref_primary_10_1038_s41598_025_09408_x
crossref_primary_10_1016_j_enbuild_2021_111731
crossref_primary_10_3390_en15114104
crossref_primary_10_1016_j_energy_2022_126397
crossref_primary_10_1016_j_enconman_2023_118017
crossref_primary_10_1016_j_enconman_2021_114449
crossref_primary_10_1016_j_est_2024_113688
crossref_primary_10_1016_j_chaos_2023_114183
crossref_primary_10_1016_j_giq_2021_101644
crossref_primary_10_1016_j_renene_2023_119738
crossref_primary_10_3390_en17194794
crossref_primary_10_1016_j_jobe_2020_101692
crossref_primary_10_1016_j_apenergy_2023_121217
crossref_primary_10_1007_s00170_024_13057_1
crossref_primary_10_1016_j_eng_2024_10_006
crossref_primary_10_1016_j_ecmx_2025_100974
crossref_primary_10_1016_j_renene_2021_06_100
crossref_primary_10_1016_j_renene_2025_122372
crossref_primary_10_1016_j_rser_2024_114510
crossref_primary_10_1016_j_heliyon_2024_e40691
crossref_primary_10_1016_j_nexus_2025_100431
crossref_primary_10_1016_j_enbuild_2025_115727
crossref_primary_10_1016_j_buildenv_2020_107561
crossref_primary_10_1016_j_enconman_2021_114834
crossref_primary_10_1016_j_enconman_2023_117515
crossref_primary_10_1016_j_apenergy_2024_123665
crossref_primary_10_1016_j_energy_2021_122931
crossref_primary_10_1016_j_jobe_2024_108816
crossref_primary_10_3390_en14196260
crossref_primary_10_3390_molecules29122937
crossref_primary_10_1016_j_apenergy_2022_119131
crossref_primary_10_1016_j_jclepro_2023_138663
crossref_primary_10_7717_peerj_cs_3042
crossref_primary_10_1016_j_enconman_2023_117183
crossref_primary_10_1016_j_applthermaleng_2023_120656
crossref_primary_10_1016_j_rser_2023_114101
crossref_primary_10_1002_aesr_202400214
crossref_primary_10_1016_j_enbuild_2021_110741
crossref_primary_10_1016_j_rser_2022_112444
crossref_primary_10_1016_j_jclepro_2024_143297
crossref_primary_10_3390_architecture5030051
crossref_primary_10_1016_j_enrev_2023_100026
crossref_primary_10_2516_stet_2024066
crossref_primary_10_1016_j_renene_2025_123651
crossref_primary_10_1016_j_enconman_2020_112891
crossref_primary_10_1016_j_energy_2022_123498
crossref_primary_10_1016_j_enbuild_2024_114661
crossref_primary_10_1016_j_energy_2021_122124
crossref_primary_10_1016_j_renene_2024_120457
crossref_primary_10_3390_en17205126
crossref_primary_10_1016_j_rser_2024_114828
crossref_primary_10_1016_j_jclepro_2023_137921
crossref_primary_10_3390_su12229570
crossref_primary_10_1016_j_apenergy_2022_119714
crossref_primary_10_1016_j_enconman_2023_116763
crossref_primary_10_1007_s11668_024_01973_z
crossref_primary_10_1109_TTE_2022_3160445
crossref_primary_10_1007_s00170_024_13374_5
crossref_primary_10_1016_j_jclepro_2021_129257
crossref_primary_10_3390_su13010410
crossref_primary_10_1016_j_enconman_2021_114786
crossref_primary_10_1016_j_apenergy_2022_119394
crossref_primary_10_1016_j_apenergy_2022_119312
crossref_primary_10_1016_j_eswa_2023_122875
crossref_primary_10_1016_j_scs_2025_106305
crossref_primary_10_1016_j_jclepro_2022_135312
crossref_primary_10_1038_s44172_024_00339_5
crossref_primary_10_1016_j_est_2023_106763
crossref_primary_10_1016_j_jclepro_2023_137797
crossref_primary_10_3390_buildings12010059
Cites_doi 10.1016/j.enconman.2018.11.026
10.1016/j.enconman.2018.04.030
10.1016/j.apenergy.2018.08.018
10.1016/j.apenergy.2017.01.023
10.1016/j.enconman.2019.06.058
10.1016/j.egypro.2019.02.005
10.1016/j.scs.2016.02.011
10.1016/j.enbuild.2018.06.033
10.1016/j.energy.2018.09.018
10.1016/j.ifacol.2017.08.523
10.1016/j.rser.2016.12.098
10.1016/j.enconman.2019.04.084
10.1016/j.apenergy.2019.02.021
10.1016/j.apenergy.2019.03.062
10.1016/j.rser.2018.11.003
10.1016/j.enconman.2019.112156
10.1016/j.enconman.2019.112426
10.1016/j.enconman.2019.05.109
10.1016/j.enconman.2020.112514
10.1016/j.energy.2018.03.018
10.1016/j.apenergy.2019.113347
10.1016/j.apenergy.2019.03.187
10.1016/j.apenergy.2017.04.061
10.1080/19401493.2015.1069398
10.1016/j.enconman.2018.09.062
10.1016/j.enconman.2019.01.030
10.1016/j.scs.2016.03.012
10.1016/j.enconman.2019.111888
10.1016/j.omega.2016.04.005
10.1016/j.enbuild.2011.04.006
10.1016/j.enconman.2019.112463
10.1016/j.energy.2016.05.076
10.1016/j.enconman.2019.112081
10.1016/j.solener.2016.09.029
10.1016/j.apenergy.2019.113630
10.1016/j.apenergy.2015.10.114
10.1016/j.energy.2019.03.184
10.1016/j.rser.2019.109337
10.1016/j.apenergy.2017.11.036
10.1016/j.enconman.2014.12.025
10.1016/j.enbuild.2017.08.044
10.1016/j.jclepro.2018.06.271
10.1016/j.energy.2019.06.118
10.1016/j.enconman.2018.07.023
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Aug 15, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Aug 15, 2020
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2020.113017
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2020_113017
S0196890420305616
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c373t-daae17bb60ef3aae7a75bffc34fc0b1f49e7aac4f97a7ab87449d91f834b45df3
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541104000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Sun Nov 09 14:26:44 EST 2025
Wed Aug 13 06:59:40 EDT 2025
Sat Nov 29 07:18:25 EST 2025
Tue Nov 18 22:43:54 EST 2025
Fri Feb 23 02:47:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Demand side management
Energy flexibility
Hybrid energy storage
Interactive energy sharing network
Zero energy buildings
Multi-objective optimisation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-daae17bb60ef3aae7a75bffc34fc0b1f49e7aac4f97a7ab87449d91f834b45df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9589-8914
0000-0003-2038-0314
PQID 2439479734
PQPubID 2047472
ParticipantIDs proquest_miscellaneous_2498271313
proquest_journals_2439479734
crossref_primary_10_1016_j_enconman_2020_113017
crossref_citationtrail_10_1016_j_enconman_2020_113017
elsevier_sciencedirect_doi_10_1016_j_enconman_2020_113017
PublicationCentury 2000
PublicationDate 2020-08-15
PublicationDateYYYYMMDD 2020-08-15
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Selinger-Lutz, Pratidino, Hollinger, Fischer, Koch, Wittwer (b0060) 2018; 172
Zhao, Ge, Sun, Ding, Yang (b0120) 2019; 184
Fan, Huang, Sun (b0150) 2018; 164
Hamdy M, Palonen M, Hasan A. Implementation of Pareto-Archive NSGA-II Algorithms to a nearly-Zero-Energy Building Optimization Problem. The first Simulation and Optimization Conference (BSO12). 2012. IBPSA-England, Loughborogh University, UK.
Luo, Yang, Xie, Xie, Liu, Agbodjan (b0195) 2019
SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), “TRNSYS 18 Volume 04, Mathematical Reference,” the documentations attached in the software package of TRNSYS 18.
Cui, Wang, Yan, Xue (b0135) 2015; 102
Palonen M, Hamdy M, Hasan A. MOBO A new software for multi-objective building performance optimization. 13th Conference of International Building Performance Simulation Association, Chambery, France, August 26–28.
Katić, Li, Verhaart, Zeiler (b0145) 2018; 174
SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), and TESS (Thermal Energy Systems Specialists). “TESSLibs 17 Component Libiaries for the TRNSYS Simulation Environment. Volume 06 HVAC Library Mathematical Reference,” the documentations attached in the software package of TRNSYS 18 for the TESS Models.
NISSAN LEAF Specs. Available from
Depcik, Cassady, Collicott, Burugupally, Li, Alam (b0025) 2020
Zhou, Cao, Hensen, Lund (b0175) 2019
Tao, Huang, Yang (b0180) 2018; 150
Boukezata, Gaubert, Chaoui, Hachemic (b0155) 2016; 139
Alirahmi, Dabbagh, Ahmadi, Wongwises (b0200) 2020
2010.
Performance based building energy code 2007. Available from
SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), TESS (Thermal Energy Systems Specialists). “TESSLibs 17 Component libraries for the TRNSYS Simulation Environment, Volume 11 Storage tank Library Mathematical Reference.”.
.
Niu, Tian, Lu, Zhao (b0050) 2019; 243
HKCEF. Guidelines to Account for and Report on Greenhouse Gas Emissions and Removals for Buildings (Commercial, Residential or Institutional Purposes) in Hong Kong.
Coninck, Helsen (b0090) 2016; 162
Tanguy, Dubois, Lopez, Gagné (b0205) 2016; 26
Cao (b0190) 2019
Hamdy, Hasan, Sirén (b0330) 2011; 43
Zhou, Cao (b0160) 2020
Barone, Buonomano, Calise, Forzano, Palombo (b0020) 2019; 101
Colmenar-Santos A, Muñoz-Gómez A, Rosales-Asensio E, López-Rey Á. Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario. 2019. DOI
Chakrabarti, Proeglhoef, Turu, Lambert, Mariaud, Acha (b0230) 2019; 176
2018.
Zhou Y, Cao S. Figure 2 is partially reprinted and partially redrawn from Energy Conversion and Management, 199, Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: A case study of a high-rise office building in Hong Kong, Copyright (2019), with permission from Elsevier.
Safder, Ifaei, Yoo (b0220) 2018; 166
Zhou Y, Cao S. Figure 3 is reprinted from Energy Conversion and Management, 199, Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: A case study of a high-rise office building in Hong Kong, Copyright (2019), with permission from Elsevier.
Qian, Gao, Yang, Yu (b0045) 2020
2011.
Ruusu, Cao, Delgado, Hasan (b0115) 2019; 180
Niu, Tian, Lu, Zhao, Lan (b0130) 2019; 241
Air-Cooled Liquid Chillers 10 to 60 Tons. CGAD090.
Yang, Gao, Zhao (b0105) 2019; 196
Aduda, Labeodan, Zeiler, Boxem, Zhao (b0140) 2016; 22
Li, Wang, Li, Wang, Zhao, Chen (b0165) 2020
Flores, Shaffer, Brouwer (b0040) 2017; 191
Land Transport Guru. Available from
Hamdy, Sirén (b0320) 2015; 9
HKEED (Hong Kong Energy End-use Data). 2018. Hong Kong Energy End-use Data 2018.
Wu, Ravey, Chrenko, Miraoui (b0030) 2019; 196
Air-Cooled Liquid Chillers with Integrated Hydronic Module, 30RB 162-802 Nominal cooling capacity 162-774 kW. Available from
Finck, Li, Kramer, Zeiler (b0095) 2017; 209
Meinrenken, Mehmani (b0215) 2019
Zhou, Cao (b0085) 2019; 158
TCSFR. Travel Characteristics Survey – Final report, The Government of the Hong Kong special administrative region, Transport Department.
Reynders, Diriken, Saelens (b0080) 2017; 198
ATB Riva Calzoni ATB 500 kW.
ANNEX 67.
Jensen, Marszal-Pomianowska, Lollini, Pasut, Knotzer, Engelmann (b0065) 2017; 155
Glensk, Madlener (b0125) 2018; 177
Zhou, Cao (b0240) 2019
Quddus, Shahvari, Marufuzzaman, Usher, Jaradat (b0035) 2018; 229
Bulk Tariff.
Ramos, Moreno, Rodríguez, Delgado, Domínguez (b0110) 2019; 194
Alanne, Cao (b0015) 2017; 71
Wang, Huang, Wang, Zeng, Li, Wang (b0185) 2018; 197
Dréau, Heiselberg (b0100) 2016; 111
Umetani, Fukushima, Morita (b0170) 2017; 67
SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), TESS (Thermal Energy Systems Specialists). “TRNSYS 18 A TESSLibs 17 Volume 03 Electrical Library, Mathematical Reference,” the documentations attached in the software package of TRNSYS 18 for the TESS Component Library.
Smart Readiness Indicator.
Mehrjerdi, Iqbal, Rakhshani, Torres (b0075) 2019
Koskela, Rautiainen, Järventausta (b0210) 2019; 239
Borges, Soares, Vale (b0225) 2017; 50
10.1016/j.enconman.2020.113017_b0260
Yang (10.1016/j.enconman.2020.113017_b0105) 2019; 196
10.1016/j.enconman.2020.113017_b0265
Wu (10.1016/j.enconman.2020.113017_b0030) 2019; 196
10.1016/j.enconman.2020.113017_b0300
Luo (10.1016/j.enconman.2020.113017_b0195) 2019
Li (10.1016/j.enconman.2020.113017_b0165) 2020
Depcik (10.1016/j.enconman.2020.113017_b0025) 2020
10.1016/j.enconman.2020.113017_b0305
Tanguy (10.1016/j.enconman.2020.113017_b0205) 2016; 26
Safder (10.1016/j.enconman.2020.113017_b0220) 2018; 166
Zhou (10.1016/j.enconman.2020.113017_b0160) 2020
Koskela (10.1016/j.enconman.2020.113017_b0210) 2019; 239
10.1016/j.enconman.2020.113017_b0290
Aduda (10.1016/j.enconman.2020.113017_b0140) 2016; 22
Cao (10.1016/j.enconman.2020.113017_b0190) 2019
Ruusu (10.1016/j.enconman.2020.113017_b0115) 2019; 180
10.1016/j.enconman.2020.113017_b0255
10.1016/j.enconman.2020.113017_b0295
Umetani (10.1016/j.enconman.2020.113017_b0170) 2017; 67
10.1016/j.enconman.2020.113017_b0250
10.1016/j.enconman.2020.113017_b0055
10.1016/j.enconman.2020.113017_b0010
Alanne (10.1016/j.enconman.2020.113017_b0015) 2017; 71
Glensk (10.1016/j.enconman.2020.113017_b0125) 2018; 177
Jensen (10.1016/j.enconman.2020.113017_b0065) 2017; 155
Coninck (10.1016/j.enconman.2020.113017_b0090) 2016; 162
Wang (10.1016/j.enconman.2020.113017_b0185) 2018; 197
Alirahmi (10.1016/j.enconman.2020.113017_b0200) 2020
Quddus (10.1016/j.enconman.2020.113017_b0035) 2018; 229
Chakrabarti (10.1016/j.enconman.2020.113017_b0230) 2019; 176
10.1016/j.enconman.2020.113017_b0280
Flores (10.1016/j.enconman.2020.113017_b0040) 2017; 191
Zhou (10.1016/j.enconman.2020.113017_b0085) 2019; 158
Reynders (10.1016/j.enconman.2020.113017_b0080) 2017; 198
Katić (10.1016/j.enconman.2020.113017_b0145) 2018; 174
Tao (10.1016/j.enconman.2020.113017_b0180) 2018; 150
10.1016/j.enconman.2020.113017_b0245
Selinger-Lutz (10.1016/j.enconman.2020.113017_b0060) 2018; 172
Zhou (10.1016/j.enconman.2020.113017_b0175) 2019
Zhou (10.1016/j.enconman.2020.113017_b0240) 2019
10.1016/j.enconman.2020.113017_b0285
Meinrenken (10.1016/j.enconman.2020.113017_b0215) 2019
Hamdy (10.1016/j.enconman.2020.113017_b0320) 2015; 9
Mehrjerdi (10.1016/j.enconman.2020.113017_b0075) 2019
Borges (10.1016/j.enconman.2020.113017_b0225) 2017; 50
10.1016/j.enconman.2020.113017_b0325
10.1016/j.enconman.2020.113017_b0005
Niu (10.1016/j.enconman.2020.113017_b0130) 2019; 241
Zhao (10.1016/j.enconman.2020.113017_b0120) 2019; 184
Hamdy (10.1016/j.enconman.2020.113017_b0330) 2011; 43
Dréau (10.1016/j.enconman.2020.113017_b0100) 2016; 111
10.1016/j.enconman.2020.113017_b0070
Barone (10.1016/j.enconman.2020.113017_b0020) 2019; 101
Qian (10.1016/j.enconman.2020.113017_b0045) 2020
10.1016/j.enconman.2020.113017_b0270
Niu (10.1016/j.enconman.2020.113017_b0050) 2019; 243
Fan (10.1016/j.enconman.2020.113017_b0150) 2018; 164
10.1016/j.enconman.2020.113017_b0310
Cui (10.1016/j.enconman.2020.113017_b0135) 2015; 102
10.1016/j.enconman.2020.113017_b0235
10.1016/j.enconman.2020.113017_b0275
Boukezata (10.1016/j.enconman.2020.113017_b0155) 2016; 139
10.1016/j.enconman.2020.113017_b0315
Finck (10.1016/j.enconman.2020.113017_b0095) 2017; 209
Ramos (10.1016/j.enconman.2020.113017_b0110) 2019; 194
References_xml – reference: Air-Cooled Liquid Chillers with Integrated Hydronic Module, 30RB 162-802 Nominal cooling capacity 162-774 kW. Available from
– volume: 172
  start-page: 228
  year: 2018
  end-page: 236
  ident: b0060
  article-title: Flexibility assessment of a pool of residential micro combined heat and power systems
  publication-title: Energy Convers Manage
– year: 2019
  ident: b0240
  article-title: Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: a case study of a high-rise office building in Hong Kong
  publication-title: Energy Convers Manage
– year: 2019
  ident: b0075
  article-title: Daily-seasonal operation in net-zero energy building powered by hybrid renewable energies and hydrogen storage systems
  publication-title: Energy Convers Manage
– volume: 174
  start-page: 199
  year: 2018
  end-page: 213
  ident: b0145
  article-title: Neural network based predictive control of personalized heating systems
  publication-title: Energy Build
– volume: 155
  start-page: 25
  year: 2017
  end-page: 34
  ident: b0065
  article-title: IEA EBC annex 67 energy flexible buildings
  publication-title: Energy Build
– volume: 241
  start-page: 390
  year: 2019
  end-page: 403
  ident: b0130
  article-title: A robust optimization model for designing the building cooling source under cooling load uncertainty
  publication-title: Appl Energy
– reference: Hamdy M, Palonen M, Hasan A. Implementation of Pareto-Archive NSGA-II Algorithms to a nearly-Zero-Energy Building Optimization Problem. The first Simulation and Optimization Conference (BSO12). 2012. IBPSA-England, Loughborogh University, UK.
– volume: 194
  start-page: 199
  year: 2019
  end-page: 216
  ident: b0110
  article-title: Potential for exploiting the synergies between buildings through DSM approaches. Case study: La Graciosa Island
  publication-title: Energy Convers Manage
– volume: 50
  start-page: 3356
  year: 2017
  end-page: 3361
  ident: b0225
  article-title: Multi-objective particle swarm optimization to solve energy scheduling with vehicle-to-grid in office buildings considering uncertainties
  publication-title: IFAC-PapersOnLine
– reference: SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), and TESS (Thermal Energy Systems Specialists). “TESSLibs 17 Component Libiaries for the TRNSYS Simulation Environment. Volume 06 HVAC Library Mathematical Reference,” the documentations attached in the software package of TRNSYS 18 for the TESS Models.
– year: 2020
  ident: b0165
  article-title: Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings
  publication-title: Energy Convers Manage
– reference: Zhou Y, Cao S. Figure 3 is reprinted from Energy Conversion and Management, 199, Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: A case study of a high-rise office building in Hong Kong, Copyright (2019), with permission from Elsevier.
– reference: HKCEF. Guidelines to Account for and Report on Greenhouse Gas Emissions and Removals for Buildings (Commercial, Residential or Institutional Purposes) in Hong Kong.
– reference: . 2011.
– reference: SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), TESS (Thermal Energy Systems Specialists). “TESSLibs 17 Component libraries for the TRNSYS Simulation Environment, Volume 11 Storage tank Library Mathematical Reference.”.
– reference: Zhou Y, Cao S. Figure 2 is partially reprinted and partially redrawn from Energy Conversion and Management, 199, Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: A case study of a high-rise office building in Hong Kong, Copyright (2019), with permission from Elsevier.
– year: 2020
  ident: b0160
  article-title: Quantification of energy flexibility of residential net-zero-energy buildings involved with dynamic operations of hybrid energy storages and diversified energy conversion strategies
  publication-title: Sustainable Energy Grids Net
– volume: 196
  start-page: 117
  year: 2019
  end-page: 126
  ident: b0105
  article-title: Coordination of integrated natural gas and electrical systems in day-ahead scheduling considering a novel flexible energy-use mechanism
  publication-title: Energy Convers Manage
– reference: TCSFR. Travel Characteristics Survey – Final report, The Government of the Hong Kong special administrative region, Transport Department.
– year: 2020
  ident: b0200
  article-title: Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy
  publication-title: Energy Convers Manage
– reference: Performance based building energy code 2007. Available from:
– reference: ; 2018.
– volume: 209
  start-page: 409
  year: 2017
  end-page: 425
  ident: b0095
  article-title: Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems
  publication-title: Appl Energy
– reference: SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), “TRNSYS 18 Volume 04, Mathematical Reference,” the documentations attached in the software package of TRNSYS 18.
– volume: 22
  start-page: 146
  year: 2016
  end-page: 163
  ident: b0140
  article-title: Demand side flexibility: Potentials and building performance implications
  publication-title: Sustainable Cities Soc
– reference: Land Transport Guru. Available from <
– volume: 101
  start-page: 625
  year: 2019
  end-page: 648
  ident: b0020
  article-title: Building to vehicle to building concept toward a novel zero energy paradigm: modelling and case studies
  publication-title: Renewable Sustainable Energy Rev
– volume: 139
  start-page: 130
  year: 2016
  end-page: 141
  ident: b0155
  article-title: Predictive current control in multifunctional grid connected inverter interfaced by PV system
  publication-title: Sol Energy
– volume: 111
  start-page: 991
  year: 2016
  end-page: 1002
  ident: b0100
  article-title: Energy flexibility of residential buildings using short term heat storage in the thermal mass
  publication-title: Energy
– volume: 239
  start-page: 1175
  year: 2019
  end-page: 1189
  ident: b0210
  article-title: Using electrical energy storage in residential buildings – sizing of battery and photovoltaic panels based on electricity cost optimization
  publication-title: Appl Energy
– volume: 158
  start-page: 2567
  year: 2019
  end-page: 2579
  ident: b0085
  article-title: Investigation of the flexibility of a residential net-zero energy building (NZEB) integrated with an electric vehicle in Hong Kong
  publication-title: Energy Procedia
– volume: 177
  start-page: 737
  year: 2018
  end-page: 749
  ident: b0125
  article-title: Evaluating the enhanced flexibility of lignite-fired power plants: A real options analysis
  publication-title: Energy Convers Manage
– year: 2019
  ident: b0195
  article-title: Multi-objective capacity optimization of a distributed energy system considering economy, environment and energy
  publication-title: Energy Convers Manage
– reference: ; 2010.
– volume: 26
  start-page: 496
  year: 2016
  end-page: 506
  ident: b0205
  article-title: Optimization model and economic assessment of collaborative charging using Vehicle-to-Building
  publication-title: Sustainable Cities Soc
– volume: 162
  start-page: 653
  year: 2016
  end-page: 665
  ident: b0090
  article-title: Quantification of flexibility in buildings by cost curves – methodology and application
  publication-title: Appl Energy
– year: 2019
  ident: b0190
  article-title: The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings
  publication-title: Appl Energy
– reference: Air-Cooled Liquid Chillers 10 to 60 Tons. CGAD090.
– reference: Colmenar-Santos A, Muñoz-Gómez A, Rosales-Asensio E, López-Rey Á. Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario. 2019. DOI:
– volume: 176
  start-page: 805
  year: 2019
  end-page: 815
  ident: b0230
  article-title: Optimisation and analysis of system integration between electric vehicles and UK decentralised energy schemes
  publication-title: Energy
– reference: ATB Riva Calzoni ATB 500 kW.
– reference: ANNEX 67.
– year: 2020
  ident: b0045
  article-title: Economic optimization and potential analysis of fuel cell vehicle-to-grid (FCV2G) system with large-scale buildings
  publication-title: Energy Convers Manage
– volume: 150
  start-page: 735
  year: 2018
  end-page: 744
  ident: b0180
  article-title: Data-driven optimized layout of battery electric vehicle charging infrastructure
  publication-title: Energy
– volume: 9
  start-page: 411
  year: 2015
  end-page: 430
  ident: b0320
  article-title: A multi-aid optimization scheme for large-scale investigation of cost-optimality and energy performance of buildings
  publication-title: J Build Perform Simul
– volume: 71
  start-page: 697
  year: 2017
  end-page: 711
  ident: b0015
  article-title: Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility
  publication-title: Renew Sustain Energy Rev
– reference: Bulk Tariff.
– reference: SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), TESS (Thermal Energy Systems Specialists). “TRNSYS 18 A TESSLibs 17 Volume 03 Electrical Library, Mathematical Reference,” the documentations attached in the software package of TRNSYS 18 for the TESS Component Library.
– volume: 191
  start-page: 367
  year: 2017
  end-page: 384
  ident: b0040
  article-title: Electricity costs for a Level 3 electric vehicle fueling station integrated with a building
  publication-title: Appl Energy
– volume: 180
  start-page: 1109
  year: 2019
  end-page: 1128
  ident: b0115
  article-title: Direct quantification of multiple-source energy flexibility in a residential building using a new model predictive high-level controller
  publication-title: Energy Convers Manage
– reference: Smart Readiness Indicator.
– volume: 198
  start-page: 192
  year: 2017
  end-page: 202
  ident: b0080
  article-title: Generic characterization method for energy flexibility: applied to structural thermal storage in residential buildings
  publication-title: Appl Energy
– volume: 197
  start-page: 1069
  year: 2018
  end-page: 1083
  ident: b0185
  article-title: Energy management of smart micro-grid with response loads and distributed generation considering demand response
  publication-title: J Cleaner Prod
– reference: HKEED (Hong Kong Energy End-use Data). 2018. Hong Kong Energy End-use Data 2018.
– volume: 184
  start-page: 15
  year: 2019
  end-page: 23
  ident: b0120
  article-title: Comparative study of flexibility enhancement technologies for the coal-fired combined heat and power plant
  publication-title: Energy Convers Manage
– reference: >.
– volume: 164
  start-page: 536
  year: 2018
  end-page: 549
  ident: b0150
  article-title: A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level
  publication-title: Energy
– volume: 166
  start-page: 602
  year: 2018
  end-page: 636
  ident: b0220
  article-title: Multi-objective optimization and flexibility analysis of a cogeneration system using thermorisk and thermoeconomic analyses
  publication-title: Energy Convers Manage
– volume: 43
  start-page: 2055
  year: 2011
  end-page: 2067
  ident: b0330
  article-title: Impact of adaptive thermal comfort criteria on building energy use and cooling equipment size using a multi-objective optimization scheme
  publication-title: Energy Build
– reference: .
– volume: 67
  start-page: 115
  year: 2017
  end-page: 122
  ident: b0170
  article-title: A linear programming based heuristic algorithm for charge and discharge scheduling of electric vehicles in a building energy management system
  publication-title: Omega
– year: 2020
  ident: b0025
  article-title: Comparison of lithium ion Batteries, hydrogen fueled combustion Engines, and a hydrogen fuel cell in powering a small Unmanned Aerial Vehicle
  publication-title: Energy Convers Manage
– volume: 102
  start-page: 227
  year: 2015
  end-page: 238
  ident: b0135
  article-title: Evaluation of a fast power demand response strategy using active and passive building cold storages for smart grid applications
  publication-title: Energy Convers Manage
– year: 2019
  ident: b0215
  article-title: Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs
  publication-title: Appl Energy
– reference: Palonen M, Hamdy M, Hasan A. MOBO A new software for multi-objective building performance optimization. 13th Conference of International Building Performance Simulation Association, Chambery, France, August 26–28.
– volume: 243
  start-page: 274
  year: 2019
  end-page: 287
  ident: b0050
  article-title: Flexible dispatch of a building energy system using building thermal storage and battery energy storage
  publication-title: Appl Energy
– reference: NISSAN LEAF Specs. Available from <
– volume: 229
  start-page: 841
  year: 2018
  end-page: 857
  ident: b0035
  article-title: A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid
  publication-title: Appl Energy
– year: 2019
  ident: b0175
  article-title: Energy integration and interaction between buildings and vehicles: a state-of-the-art review
  publication-title: Renew Sustain Energy Rev
– volume: 196
  start-page: 878
  year: 2019
  end-page: 890
  ident: b0030
  article-title: Demand side energy management of EV charging stations by approximate dynamic programming
  publication-title: Energy Convers Manage
– ident: 10.1016/j.enconman.2020.113017_b0270
– ident: 10.1016/j.enconman.2020.113017_b0255
– ident: 10.1016/j.enconman.2020.113017_b0280
– volume: 180
  start-page: 1109
  year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0115
  article-title: Direct quantification of multiple-source energy flexibility in a residential building using a new model predictive high-level controller
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.11.026
– volume: 166
  start-page: 602
  year: 2018
  ident: 10.1016/j.enconman.2020.113017_b0220
  article-title: Multi-objective optimization and flexibility analysis of a cogeneration system using thermorisk and thermoeconomic analyses
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.04.030
– volume: 229
  start-page: 841
  year: 2018
  ident: 10.1016/j.enconman.2020.113017_b0035
  article-title: A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.08.018
– volume: 191
  start-page: 367
  year: 2017
  ident: 10.1016/j.enconman.2020.113017_b0040
  article-title: Electricity costs for a Level 3 electric vehicle fueling station integrated with a building
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.023
– ident: 10.1016/j.enconman.2020.113017_b0325
– ident: 10.1016/j.enconman.2020.113017_b0265
– ident: 10.1016/j.enconman.2020.113017_b0290
– ident: 10.1016/j.enconman.2020.113017_b0235
– volume: 196
  start-page: 878
  year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0030
  article-title: Demand side energy management of EV charging stations by approximate dynamic programming
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.06.058
– ident: 10.1016/j.enconman.2020.113017_b0315
– volume: 158
  start-page: 2567
  year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0085
  article-title: Investigation of the flexibility of a residential net-zero energy building (NZEB) integrated with an electric vehicle in Hong Kong
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.02.005
– volume: 22
  start-page: 146
  year: 2016
  ident: 10.1016/j.enconman.2020.113017_b0140
  article-title: Demand side flexibility: Potentials and building performance implications
  publication-title: Sustainable Cities Soc
  doi: 10.1016/j.scs.2016.02.011
– ident: 10.1016/j.enconman.2020.113017_b0275
– volume: 174
  start-page: 199
  year: 2018
  ident: 10.1016/j.enconman.2020.113017_b0145
  article-title: Neural network based predictive control of personalized heating systems
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.06.033
– volume: 164
  start-page: 536
  year: 2018
  ident: 10.1016/j.enconman.2020.113017_b0150
  article-title: A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.018
– volume: 50
  start-page: 3356
  year: 2017
  ident: 10.1016/j.enconman.2020.113017_b0225
  article-title: Multi-objective particle swarm optimization to solve energy scheduling with vehicle-to-grid in office buildings considering uncertainties
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.523
– volume: 71
  start-page: 697
  year: 2017
  ident: 10.1016/j.enconman.2020.113017_b0015
  article-title: Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.12.098
– volume: 194
  start-page: 199
  year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0110
  article-title: Potential for exploiting the synergies between buildings through DSM approaches. Case study: La Graciosa Island
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.04.084
– volume: 239
  start-page: 1175
  year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0210
  article-title: Using electrical energy storage in residential buildings – sizing of battery and photovoltaic panels based on electricity cost optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.02.021
– ident: 10.1016/j.enconman.2020.113017_b0285
– volume: 241
  start-page: 390
  year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0130
  article-title: A robust optimization model for designing the building cooling source under cooling load uncertainty
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.062
– ident: 10.1016/j.enconman.2020.113017_b0260
– volume: 101
  start-page: 625
  year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0020
  article-title: Building to vehicle to building concept toward a novel zero energy paradigm: modelling and case studies
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2018.11.003
– year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0240
  article-title: Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: a case study of a high-rise office building in Hong Kong
  publication-title: Energy Convers Manage
– year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0075
  article-title: Daily-seasonal operation in net-zero energy building powered by hybrid renewable energies and hydrogen storage systems
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112156
– year: 2020
  ident: 10.1016/j.enconman.2020.113017_b0200
  article-title: Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112426
– volume: 196
  start-page: 117
  year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0105
  article-title: Coordination of integrated natural gas and electrical systems in day-ahead scheduling considering a novel flexible energy-use mechanism
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.05.109
– ident: 10.1016/j.enconman.2020.113017_b0310
– year: 2020
  ident: 10.1016/j.enconman.2020.113017_b0025
  article-title: Comparison of lithium ion Batteries, hydrogen fueled combustion Engines, and a hydrogen fuel cell in powering a small Unmanned Aerial Vehicle
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.112514
– ident: 10.1016/j.enconman.2020.113017_b0295
– ident: 10.1016/j.enconman.2020.113017_b0300
– ident: 10.1016/j.enconman.2020.113017_b0070
– year: 2020
  ident: 10.1016/j.enconman.2020.113017_b0165
  article-title: Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings
  publication-title: Energy Convers Manage
– volume: 150
  start-page: 735
  year: 2018
  ident: 10.1016/j.enconman.2020.113017_b0180
  article-title: Data-driven optimized layout of battery electric vehicle charging infrastructure
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.018
– year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0190
  article-title: The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113347
– volume: 243
  start-page: 274
  year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0050
  article-title: Flexible dispatch of a building energy system using building thermal storage and battery energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.187
– volume: 198
  start-page: 192
  issue: 15
  year: 2017
  ident: 10.1016/j.enconman.2020.113017_b0080
  article-title: Generic characterization method for energy flexibility: applied to structural thermal storage in residential buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.04.061
– volume: 9
  start-page: 411
  issue: 4
  year: 2015
  ident: 10.1016/j.enconman.2020.113017_b0320
  article-title: A multi-aid optimization scheme for large-scale investigation of cost-optimality and energy performance of buildings
  publication-title: J Build Perform Simul
  doi: 10.1080/19401493.2015.1069398
– volume: 177
  start-page: 737
  year: 2018
  ident: 10.1016/j.enconman.2020.113017_b0125
  article-title: Evaluating the enhanced flexibility of lignite-fired power plants: A real options analysis
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.09.062
– volume: 184
  start-page: 15
  year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0120
  article-title: Comparative study of flexibility enhancement technologies for the coal-fired combined heat and power plant
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.01.030
– volume: 26
  start-page: 496
  year: 2016
  ident: 10.1016/j.enconman.2020.113017_b0205
  article-title: Optimization model and economic assessment of collaborative charging using Vehicle-to-Building
  publication-title: Sustainable Cities Soc
  doi: 10.1016/j.scs.2016.03.012
– ident: 10.1016/j.enconman.2020.113017_b0245
  doi: 10.1016/j.enconman.2019.111888
– ident: 10.1016/j.enconman.2020.113017_b0055
– volume: 67
  start-page: 115
  year: 2017
  ident: 10.1016/j.enconman.2020.113017_b0170
  article-title: A linear programming based heuristic algorithm for charge and discharge scheduling of electric vehicles in a building energy management system
  publication-title: Omega
  doi: 10.1016/j.omega.2016.04.005
– volume: 43
  start-page: 2055
  issue: 9
  year: 2011
  ident: 10.1016/j.enconman.2020.113017_b0330
  article-title: Impact of adaptive thermal comfort criteria on building energy use and cooling equipment size using a multi-objective optimization scheme
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.04.006
– year: 2020
  ident: 10.1016/j.enconman.2020.113017_b0160
  article-title: Quantification of energy flexibility of residential net-zero-energy buildings involved with dynamic operations of hybrid energy storages and diversified energy conversion strategies
  publication-title: Sustainable Energy Grids Net
– year: 2020
  ident: 10.1016/j.enconman.2020.113017_b0045
  article-title: Economic optimization and potential analysis of fuel cell vehicle-to-grid (FCV2G) system with large-scale buildings
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112463
– volume: 111
  start-page: 991
  year: 2016
  ident: 10.1016/j.enconman.2020.113017_b0100
  article-title: Energy flexibility of residential buildings using short term heat storage in the thermal mass
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.076
– year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0195
  article-title: Multi-objective capacity optimization of a distributed energy system considering economy, environment and energy
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2019.112081
– volume: 139
  start-page: 130
  year: 2016
  ident: 10.1016/j.enconman.2020.113017_b0155
  article-title: Predictive current control in multifunctional grid connected inverter interfaced by PV system
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.09.029
– year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0215
  article-title: Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113630
– ident: 10.1016/j.enconman.2020.113017_b0005
– volume: 162
  start-page: 653
  year: 2016
  ident: 10.1016/j.enconman.2020.113017_b0090
  article-title: Quantification of flexibility in buildings by cost curves – methodology and application
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.114
– volume: 176
  start-page: 805
  year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0230
  article-title: Optimisation and analysis of system integration between electric vehicles and UK decentralised energy schemes
  publication-title: Energy
  doi: 10.1016/j.energy.2019.03.184
– ident: 10.1016/j.enconman.2020.113017_b0305
– year: 2019
  ident: 10.1016/j.enconman.2020.113017_b0175
  article-title: Energy integration and interaction between buildings and vehicles: a state-of-the-art review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109337
– volume: 209
  start-page: 409
  year: 2017
  ident: 10.1016/j.enconman.2020.113017_b0095
  article-title: Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.11.036
– volume: 102
  start-page: 227
  issue: 15
  year: 2015
  ident: 10.1016/j.enconman.2020.113017_b0135
  article-title: Evaluation of a fast power demand response strategy using active and passive building cold storages for smart grid applications
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.12.025
– volume: 155
  start-page: 25
  year: 2017
  ident: 10.1016/j.enconman.2020.113017_b0065
  article-title: IEA EBC annex 67 energy flexible buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.08.044
– volume: 197
  start-page: 1069
  year: 2018
  ident: 10.1016/j.enconman.2020.113017_b0185
  article-title: Energy management of smart micro-grid with response loads and distributed generation considering demand response
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2018.06.271
– ident: 10.1016/j.enconman.2020.113017_b0010
  doi: 10.1016/j.energy.2019.06.118
– volume: 172
  start-page: 228
  year: 2018
  ident: 10.1016/j.enconman.2020.113017_b0060
  article-title: Flexibility assessment of a pool of residential micro combined heat and power systems
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.07.023
– ident: 10.1016/j.enconman.2020.113017_b0250
  doi: 10.1016/j.enconman.2019.111888
SSID ssj0003506
Score 2.5782635
Snippet Multi-objective optimisation of interactive buildings-vehicles energy sharing network. [Display omitted] •A synergic buildings-vehicles energy sharing network...
Systematic interactions between buildings, vehicles, and renewables can increase eco-economic viability on a neighbourhood scale. In this study, an interactive...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113017
SubjectTerms Algorithms
Archives & records
Buildings
Carbon dioxide
Carbon dioxide emissions
cities
Competitiveness
Decision making
Demand side management
design
Economics
Electricity
emissions
Energy
Energy flexibility
Environmental conflicts
Flexibility
Hybrid energy storage
imports
Interactive energy sharing network
Multi-objective optimisation
Multiple objective analysis
Pareto optimization
renewable electricity
Renewable energy
renewable energy sources
solutions
Vehicles
viability
Zero energy buildings
Title Multi-objective optimisation of an interactive buildings-vehicles energy sharing network with high energy flexibility using the Pareto archive NSGA-II algorithm
URI https://dx.doi.org/10.1016/j.enconman.2020.113017
https://www.proquest.com/docview/2439479734
https://www.proquest.com/docview/2498271313
Volume 218
WOSCitedRecordID wos000541104000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8IK6iMJCREC9RRlMndfxYTR0UjTKJTqp4iZzUXiltUtqmGv-Gn8BP5PiWhm1o44GXKHJsp833xefk-FwQek0zlRUuFj4JVQkzULB91o2ELxXkMQ0zzlNdbIIOh_F4zE4ajV8uFmY7p3ken5-z5X-FGtoAbBU6-w9wV5NCA5wD6HAE2OF4I-B1SK1fpDOzlHkFLAoL67Sjd_1znSNCR0cpz3VbF3vtb8VU-8h5wsQDrqdcO-flxlPcmGxVemPXQapkmtq59odXrl3c1Ymqm1t43KS09Yaf3_X8wcDj87NiBTMs_tgLMBNp13dtt9N7GYtLLjlfpkWphUUpvpU7Ph_ywngW5cpYc1YJjwI-IoTNGwDKbc1Kb0TKx2LKFzaqy1o8OtrfzsR8OiMo6_oxM2WL3SoOqoq3VBVqlNi9UjYYM8XsQCUIzeGfHKi57YidNHQeAMNPydHp8XEy6o9Hb5bffVWnTO3n26Itt9BehwLNm2ivN-iPP1TSn0S6nmv1G2tR6Vff-m8K0QXVQOs7o_vonv1QwT1DsAeoIfKH6G4tfeUj9PMC1XCdariQmOe4RjV8mWrYMAlbqmFLNayohhXVXIca1bCmGgaqYUM1bKmGLdVwRbXH6PSoPzp879uKH35GKNn4E85FQNO02xaSwDnlNEqlzEgos3YayJBBE89CyeAKT1XpBjZhgYxJmIbRRJInqJkDw54iPOmEnEUyCGWXht2A8SiWGYvbLKMZSSe0hSL32JPMpsNXVVnmifN7nCUOrkTBlRi4WuhtNW5pEsJcO4I5VBOr1hp1NQFmXjt239EgsWvMOumoaHbKKAlb6FV1GeBVe308F0Wp-sASTAMSkGc36PMc3dm9aPuouVmV4gW6nW03X9erl5bivwEq7uW0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimisation+of+an+interactive+buildings-vehicles+energy+sharing+network+with+high+energy+flexibility+using+the+Pareto+archive+NSGA-II+algorithm&rft.jtitle=Energy+conversion+and+management&rft.au=Zhou%2C+Yuekuan&rft.au=Cao%2C+Sunliang&rft.au=Kosonen%2C+Risto&rft.au=Hamdy%2C+Mohamed&rft.date=2020-08-15&rft.issn=0196-8904&rft.volume=218+p.113017-&rft_id=info:doi/10.1016%2Fj.enconman.2020.113017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon