Multi-objective optimisation of an interactive buildings-vehicles energy sharing network with high energy flexibility using the Pareto archive NSGA-II algorithm
Multi-objective optimisation of interactive buildings-vehicles energy sharing network. [Display omitted] •A synergic buildings-vehicles energy sharing network with multiple interactions.•Energy flexibility exploitation with the advanced grid-responsive control strategy.•Techno-economic and multiple...
Gespeichert in:
| Veröffentlicht in: | Energy conversion and management Jg. 218; S. 113017 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Elsevier Ltd
15.08.2020
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0196-8904, 1879-2227 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multi-objective optimisation of interactive buildings-vehicles energy sharing network.
[Display omitted]
•A synergic buildings-vehicles energy sharing network with multiple interactions.•Energy flexibility exploitation with the advanced grid-responsive control strategy.•Techno-economic and multiple criteria with cost, emission and energy flexibility.•Multi-objective optimization using the Pareto archive NSGA-II algorithm.•Optimal solutions to energy-related conflicts for multi-criteria decision-makers.
Systematic interactions between buildings, vehicles, and renewables can increase eco-economic viability on a neighbourhood scale. In this study, an interactive buildings-vehicles energy sharing network with multidirectional energy interactions was formulated for energy interactions and integrations together with a grid-responsive strategy for the management of off-peak renewable energy and grid electricity. Energy flexibility indicators (e.g., off-peak surplus renewable shifted ratio and off-peak grid shifted ratio) were introduced, developed, and implemented in an interactive buildings-vehicles energy sharing network for the energy flexibility assessment. Several energy-related conflicts, such as energy congestion contradiction and energy-related economic and environmental conflicts, were presented and discussed together with effective solutions provided to decision-makers for optimal design and robust operation. To reach a trade-off between energy-related conflicts, multi-objective optimisation was conducted, and implemented with an advanced multi-objective optimisation algorithm (called Pareto archive NSGA-II). The research results show that the formulated interactive buildings-vehicles energy sharing network demonstrates greater robustness and competitiveness than the conventional isolated system in terms of cost, emissions, and energy flexibility. Regarding multiple energy-related conflicts in the formulated interactive energy sharing network, the results show that multi-objective optimisation is able to decrease the equivalent CO2 emissions of the buildings-vehicles energy system by 7.5%, from 147.4 to 136.4 kg/m2.a, and reduce the import cost from the electric grid by 8.5%, from 212.7 to 194.6 HK$/m2.a, together with a high energy flexibility: a maximum of 11.03% (1.5% in a conventional isolated system) of the off-peak grid electricity can be stored by the electrical storages and a maximum of 52.48% (33.6% in the conventional isolated system) of the off-peak surplus renewable electricity can be shifted to peak period. This study formulates an interactive energy sharing network between buildings and vehicles, together with quantifiable energy flexibility assessment criteria and effective solutions for dealing with multiple energy-related conflicts, which are critical for interactive buildings-vehicles energy sharing networks with high energy flexibilities in smart cities. |
|---|---|
| AbstractList | Multi-objective optimisation of interactive buildings-vehicles energy sharing network.
[Display omitted]
•A synergic buildings-vehicles energy sharing network with multiple interactions.•Energy flexibility exploitation with the advanced grid-responsive control strategy.•Techno-economic and multiple criteria with cost, emission and energy flexibility.•Multi-objective optimization using the Pareto archive NSGA-II algorithm.•Optimal solutions to energy-related conflicts for multi-criteria decision-makers.
Systematic interactions between buildings, vehicles, and renewables can increase eco-economic viability on a neighbourhood scale. In this study, an interactive buildings-vehicles energy sharing network with multidirectional energy interactions was formulated for energy interactions and integrations together with a grid-responsive strategy for the management of off-peak renewable energy and grid electricity. Energy flexibility indicators (e.g., off-peak surplus renewable shifted ratio and off-peak grid shifted ratio) were introduced, developed, and implemented in an interactive buildings-vehicles energy sharing network for the energy flexibility assessment. Several energy-related conflicts, such as energy congestion contradiction and energy-related economic and environmental conflicts, were presented and discussed together with effective solutions provided to decision-makers for optimal design and robust operation. To reach a trade-off between energy-related conflicts, multi-objective optimisation was conducted, and implemented with an advanced multi-objective optimisation algorithm (called Pareto archive NSGA-II). The research results show that the formulated interactive buildings-vehicles energy sharing network demonstrates greater robustness and competitiveness than the conventional isolated system in terms of cost, emissions, and energy flexibility. Regarding multiple energy-related conflicts in the formulated interactive energy sharing network, the results show that multi-objective optimisation is able to decrease the equivalent CO2 emissions of the buildings-vehicles energy system by 7.5%, from 147.4 to 136.4 kg/m2.a, and reduce the import cost from the electric grid by 8.5%, from 212.7 to 194.6 HK$/m2.a, together with a high energy flexibility: a maximum of 11.03% (1.5% in a conventional isolated system) of the off-peak grid electricity can be stored by the electrical storages and a maximum of 52.48% (33.6% in the conventional isolated system) of the off-peak surplus renewable electricity can be shifted to peak period. This study formulates an interactive energy sharing network between buildings and vehicles, together with quantifiable energy flexibility assessment criteria and effective solutions for dealing with multiple energy-related conflicts, which are critical for interactive buildings-vehicles energy sharing networks with high energy flexibilities in smart cities. Systematic interactions between buildings, vehicles, and renewables can increase eco-economic viability on a neighbourhood scale. In this study, an interactive buildings-vehicles energy sharing network with multidirectional energy interactions was formulated for energy interactions and integrations together with a grid-responsive strategy for the management of off-peak renewable energy and grid electricity. Energy flexibility indicators (e.g., off-peak surplus renewable shifted ratio and off-peak grid shifted ratio) were introduced, developed, and implemented in an interactive buildings-vehicles energy sharing network for the energy flexibility assessment. Several energy-related conflicts, such as energy congestion contradiction and energy-related economic and environmental conflicts, were presented and discussed together with effective solutions provided to decision-makers for optimal design and robust operation. To reach a trade-off between energy-related conflicts, multi-objective optimisation was conducted, and implemented with an advanced multi-objective optimisation algorithm (called Pareto archive NSGA-II). The research results show that the formulated interactive buildings-vehicles energy sharing network demonstrates greater robustness and competitiveness than the conventional isolated system in terms of cost, emissions, and energy flexibility. Regarding multiple energy-related conflicts in the formulated interactive energy sharing network, the results show that multi-objective optimisation is able to decrease the equivalent CO₂ emissions of the buildings-vehicles energy system by 7.5%, from 147.4 to 136.4 kg/m².a, and reduce the import cost from the electric grid by 8.5%, from 212.7 to 194.6 HK$/m².a, together with a high energy flexibility: a maximum of 11.03% (1.5% in a conventional isolated system) of the off-peak grid electricity can be stored by the electrical storages and a maximum of 52.48% (33.6% in the conventional isolated system) of the off-peak surplus renewable electricity can be shifted to peak period. This study formulates an interactive energy sharing network between buildings and vehicles, together with quantifiable energy flexibility assessment criteria and effective solutions for dealing with multiple energy-related conflicts, which are critical for interactive buildings-vehicles energy sharing networks with high energy flexibilities in smart cities. Systematic interactions between buildings, vehicles, and renewables can increase eco-economic viability on a neighbourhood scale. In this study, an interactive buildings-vehicles energy sharing network with multidirectional energy interactions was formulated for energy interactions and integrations together with a grid-responsive strategy for the management of off-peak renewable energy and grid electricity. Energy flexibility indicators (e.g., off-peak surplus renewable shifted ratio and off-peak grid shifted ratio) were introduced, developed, and implemented in an interactive buildings-vehicles energy sharing network for the energy flexibility assessment. Several energy-related conflicts, such as energy congestion contradiction and energy-related economic and environmental conflicts, were presented and discussed together with effective solutions provided to decision-makers for optimal design and robust operation. To reach a trade-off between energy-related conflicts, multi-objective optimisation was conducted, and implemented with an advanced multi-objective optimisation algorithm (called Pareto archive NSGA-II). The research results show that the formulated interactive buildings-vehicles energy sharing network demonstrates greater robustness and competitiveness than the conventional isolated system in terms of cost, emissions, and energy flexibility. Regarding multiple energy-related conflicts in the formulated interactive energy sharing network, the results show that multi-objective optimisation is able to decrease the equivalent CO2 emissions of the buildings-vehicles energy system by 7.5%, from 147.4 to 136.4 kg/m2.a, and reduce the import cost from the electric grid by 8.5%, from 212.7 to 194.6 HK$/m2.a, together with a high energy flexibility: a maximum of 11.03% (1.5% in a conventional isolated system) of the off-peak grid electricity can be stored by the electrical storages and a maximum of 52.48% (33.6% in the conventional isolated system) of the off-peak surplus renewable electricity can be shifted to peak period. This study formulates an interactive energy sharing network between buildings and vehicles, together with quantifiable energy flexibility assessment criteria and effective solutions for dealing with multiple energy-related conflicts, which are critical for interactive buildings-vehicles energy sharing networks with high energy flexibilities in smart cities. |
| ArticleNumber | 113017 |
| Author | Zhou, Yuekuan Cao, Sunliang Hamdy, Mohamed Kosonen, Risto |
| Author_xml | – sequence: 1 givenname: Yuekuan orcidid: 0000-0003-2038-0314 surname: Zhou fullname: Zhou, Yuekuan organization: Renewable Energy Research Group (RERG), Department of Building Services Engineering, Faculty of Construction and Environment, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China – sequence: 2 givenname: Sunliang orcidid: 0000-0001-9589-8914 surname: Cao fullname: Cao, Sunliang email: sunliang.cao@polyu.edu.hk, caosunliang@msn.com organization: Renewable Energy Research Group (RERG), Department of Building Services Engineering, Faculty of Construction and Environment, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China – sequence: 3 givenname: Risto surname: Kosonen fullname: Kosonen, Risto organization: Department of Mechanical Engineering, School of Engineering, Aalto University, Finland – sequence: 4 givenname: Mohamed surname: Hamdy fullname: Hamdy, Mohamed organization: Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway |
| BookMark | eNqFkc1u1DAUhSNUJKaFV0CW2LDJ1I49cSKxoKqgHan8SMDacpzryR0y9mA7U-ZteFQ8hG666crWPd85urrnvDhz3kFRvGZ0ySirL7dLcMa7nXbLilZ5yDhl8lmxYI1sy6qq5FmxoKyty6al4kVxHuOWUspXtF4Ufz5NY8LSd1swCQ9A_D7hDqNO6B3xlmhH0CUIepa7Ccce3SaWBxjQjBAJOAibI4mDDlkgDtK9Dz_JPaaBDLgZHgA7wm_scMR0JFM8oWkA8lUHSJ7oYIZT_udvN1flek30uPEhJ-xeFs-tHiO8-v9eFD8-fvh-fVvefblZX1_dlYZLnspea2Cy62oKlue_1HLVWWu4sIZ2zIo2j7QRts2K7hopRNu3zDZcdGLVW35RvJ1z98H_miAmla9gYBy1Az9FVYm2qSTjjGf0zSN066fg8naZ4q2QreQiU_VMmeBjDGDVPuBOh6NiVJ2KU1v1UJw6Fafm4rLx3SOjwfSvjxQ0jk_b3892yNc6IAQVDWYSegy5Y9V7fCriL-Mlv-o |
| CitedBy_id | crossref_primary_10_1038_s41598_025_09408_x crossref_primary_10_1016_j_enbuild_2021_111731 crossref_primary_10_3390_en15114104 crossref_primary_10_1016_j_energy_2022_126397 crossref_primary_10_1016_j_enconman_2023_118017 crossref_primary_10_1016_j_enconman_2021_114449 crossref_primary_10_1016_j_est_2024_113688 crossref_primary_10_1016_j_chaos_2023_114183 crossref_primary_10_1016_j_giq_2021_101644 crossref_primary_10_1016_j_renene_2023_119738 crossref_primary_10_3390_en17194794 crossref_primary_10_1016_j_jobe_2020_101692 crossref_primary_10_1016_j_apenergy_2023_121217 crossref_primary_10_1007_s00170_024_13057_1 crossref_primary_10_1016_j_eng_2024_10_006 crossref_primary_10_1016_j_ecmx_2025_100974 crossref_primary_10_1016_j_renene_2021_06_100 crossref_primary_10_1016_j_renene_2025_122372 crossref_primary_10_1016_j_rser_2024_114510 crossref_primary_10_1016_j_heliyon_2024_e40691 crossref_primary_10_1016_j_nexus_2025_100431 crossref_primary_10_1016_j_enbuild_2025_115727 crossref_primary_10_1016_j_buildenv_2020_107561 crossref_primary_10_1016_j_enconman_2021_114834 crossref_primary_10_1016_j_enconman_2023_117515 crossref_primary_10_1016_j_apenergy_2024_123665 crossref_primary_10_1016_j_energy_2021_122931 crossref_primary_10_1016_j_jobe_2024_108816 crossref_primary_10_3390_en14196260 crossref_primary_10_3390_molecules29122937 crossref_primary_10_1016_j_apenergy_2022_119131 crossref_primary_10_1016_j_jclepro_2023_138663 crossref_primary_10_7717_peerj_cs_3042 crossref_primary_10_1016_j_enconman_2023_117183 crossref_primary_10_1016_j_applthermaleng_2023_120656 crossref_primary_10_1016_j_rser_2023_114101 crossref_primary_10_1002_aesr_202400214 crossref_primary_10_1016_j_enbuild_2021_110741 crossref_primary_10_1016_j_rser_2022_112444 crossref_primary_10_1016_j_jclepro_2024_143297 crossref_primary_10_3390_architecture5030051 crossref_primary_10_1016_j_enrev_2023_100026 crossref_primary_10_2516_stet_2024066 crossref_primary_10_1016_j_renene_2025_123651 crossref_primary_10_1016_j_enconman_2020_112891 crossref_primary_10_1016_j_energy_2022_123498 crossref_primary_10_1016_j_enbuild_2024_114661 crossref_primary_10_1016_j_energy_2021_122124 crossref_primary_10_1016_j_renene_2024_120457 crossref_primary_10_3390_en17205126 crossref_primary_10_1016_j_rser_2024_114828 crossref_primary_10_1016_j_jclepro_2023_137921 crossref_primary_10_3390_su12229570 crossref_primary_10_1016_j_apenergy_2022_119714 crossref_primary_10_1016_j_enconman_2023_116763 crossref_primary_10_1007_s11668_024_01973_z crossref_primary_10_1109_TTE_2022_3160445 crossref_primary_10_1007_s00170_024_13374_5 crossref_primary_10_1016_j_jclepro_2021_129257 crossref_primary_10_3390_su13010410 crossref_primary_10_1016_j_enconman_2021_114786 crossref_primary_10_1016_j_apenergy_2022_119394 crossref_primary_10_1016_j_apenergy_2022_119312 crossref_primary_10_1016_j_eswa_2023_122875 crossref_primary_10_1016_j_scs_2025_106305 crossref_primary_10_1016_j_jclepro_2022_135312 crossref_primary_10_1038_s44172_024_00339_5 crossref_primary_10_1016_j_est_2023_106763 crossref_primary_10_1016_j_jclepro_2023_137797 crossref_primary_10_3390_buildings12010059 |
| Cites_doi | 10.1016/j.enconman.2018.11.026 10.1016/j.enconman.2018.04.030 10.1016/j.apenergy.2018.08.018 10.1016/j.apenergy.2017.01.023 10.1016/j.enconman.2019.06.058 10.1016/j.egypro.2019.02.005 10.1016/j.scs.2016.02.011 10.1016/j.enbuild.2018.06.033 10.1016/j.energy.2018.09.018 10.1016/j.ifacol.2017.08.523 10.1016/j.rser.2016.12.098 10.1016/j.enconman.2019.04.084 10.1016/j.apenergy.2019.02.021 10.1016/j.apenergy.2019.03.062 10.1016/j.rser.2018.11.003 10.1016/j.enconman.2019.112156 10.1016/j.enconman.2019.112426 10.1016/j.enconman.2019.05.109 10.1016/j.enconman.2020.112514 10.1016/j.energy.2018.03.018 10.1016/j.apenergy.2019.113347 10.1016/j.apenergy.2019.03.187 10.1016/j.apenergy.2017.04.061 10.1080/19401493.2015.1069398 10.1016/j.enconman.2018.09.062 10.1016/j.enconman.2019.01.030 10.1016/j.scs.2016.03.012 10.1016/j.enconman.2019.111888 10.1016/j.omega.2016.04.005 10.1016/j.enbuild.2011.04.006 10.1016/j.enconman.2019.112463 10.1016/j.energy.2016.05.076 10.1016/j.enconman.2019.112081 10.1016/j.solener.2016.09.029 10.1016/j.apenergy.2019.113630 10.1016/j.apenergy.2015.10.114 10.1016/j.energy.2019.03.184 10.1016/j.rser.2019.109337 10.1016/j.apenergy.2017.11.036 10.1016/j.enconman.2014.12.025 10.1016/j.enbuild.2017.08.044 10.1016/j.jclepro.2018.06.271 10.1016/j.energy.2019.06.118 10.1016/j.enconman.2018.07.023 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Aug 15, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Aug 15, 2020 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.enconman.2020.113017 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Economics |
| EISSN | 1879-2227 |
| ExternalDocumentID | 10_1016_j_enconman_2020_113017 S0196890420305616 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ 9DU A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7ST 7TB 8FD AGCQF C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c373t-daae17bb60ef3aae7a75bffc34fc0b1f49e7aac4f97a7ab87449d91f834b45df3 |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541104000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Sun Nov 09 14:26:44 EST 2025 Wed Aug 13 06:59:40 EDT 2025 Sat Nov 29 07:18:25 EST 2025 Tue Nov 18 22:43:54 EST 2025 Fri Feb 23 02:47:53 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Demand side management Energy flexibility Hybrid energy storage Interactive energy sharing network Zero energy buildings Multi-objective optimisation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c373t-daae17bb60ef3aae7a75bffc34fc0b1f49e7aac4f97a7ab87449d91f834b45df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9589-8914 0000-0003-2038-0314 |
| PQID | 2439479734 |
| PQPubID | 2047472 |
| ParticipantIDs | proquest_miscellaneous_2498271313 proquest_journals_2439479734 crossref_primary_10_1016_j_enconman_2020_113017 crossref_citationtrail_10_1016_j_enconman_2020_113017 elsevier_sciencedirect_doi_10_1016_j_enconman_2020_113017 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-15 |
| PublicationDateYYYYMMDD | 2020-08-15 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Selinger-Lutz, Pratidino, Hollinger, Fischer, Koch, Wittwer (b0060) 2018; 172 Zhao, Ge, Sun, Ding, Yang (b0120) 2019; 184 Fan, Huang, Sun (b0150) 2018; 164 Hamdy M, Palonen M, Hasan A. Implementation of Pareto-Archive NSGA-II Algorithms to a nearly-Zero-Energy Building Optimization Problem. The first Simulation and Optimization Conference (BSO12). 2012. IBPSA-England, Loughborogh University, UK. Luo, Yang, Xie, Xie, Liu, Agbodjan (b0195) 2019 SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), “TRNSYS 18 Volume 04, Mathematical Reference,” the documentations attached in the software package of TRNSYS 18. Cui, Wang, Yan, Xue (b0135) 2015; 102 Palonen M, Hamdy M, Hasan A. MOBO A new software for multi-objective building performance optimization. 13th Conference of International Building Performance Simulation Association, Chambery, France, August 26–28. Katić, Li, Verhaart, Zeiler (b0145) 2018; 174 SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), and TESS (Thermal Energy Systems Specialists). “TESSLibs 17 Component Libiaries for the TRNSYS Simulation Environment. Volume 06 HVAC Library Mathematical Reference,” the documentations attached in the software package of TRNSYS 18 for the TESS Models. NISSAN LEAF Specs. Available from Depcik, Cassady, Collicott, Burugupally, Li, Alam (b0025) 2020 Zhou, Cao, Hensen, Lund (b0175) 2019 Tao, Huang, Yang (b0180) 2018; 150 Boukezata, Gaubert, Chaoui, Hachemic (b0155) 2016; 139 Alirahmi, Dabbagh, Ahmadi, Wongwises (b0200) 2020 2010. Performance based building energy code 2007. Available from SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), TESS (Thermal Energy Systems Specialists). “TESSLibs 17 Component libraries for the TRNSYS Simulation Environment, Volume 11 Storage tank Library Mathematical Reference.”. . Niu, Tian, Lu, Zhao (b0050) 2019; 243 HKCEF. Guidelines to Account for and Report on Greenhouse Gas Emissions and Removals for Buildings (Commercial, Residential or Institutional Purposes) in Hong Kong. Coninck, Helsen (b0090) 2016; 162 Tanguy, Dubois, Lopez, Gagné (b0205) 2016; 26 Cao (b0190) 2019 Hamdy, Hasan, Sirén (b0330) 2011; 43 Zhou, Cao (b0160) 2020 Barone, Buonomano, Calise, Forzano, Palombo (b0020) 2019; 101 Colmenar-Santos A, Muñoz-Gómez A, Rosales-Asensio E, López-Rey Á. Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario. 2019. DOI Chakrabarti, Proeglhoef, Turu, Lambert, Mariaud, Acha (b0230) 2019; 176 2018. Zhou Y, Cao S. Figure 2 is partially reprinted and partially redrawn from Energy Conversion and Management, 199, Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: A case study of a high-rise office building in Hong Kong, Copyright (2019), with permission from Elsevier. Safder, Ifaei, Yoo (b0220) 2018; 166 Zhou Y, Cao S. Figure 3 is reprinted from Energy Conversion and Management, 199, Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: A case study of a high-rise office building in Hong Kong, Copyright (2019), with permission from Elsevier. Qian, Gao, Yang, Yu (b0045) 2020 2011. Ruusu, Cao, Delgado, Hasan (b0115) 2019; 180 Niu, Tian, Lu, Zhao, Lan (b0130) 2019; 241 Air-Cooled Liquid Chillers 10 to 60 Tons. CGAD090. Yang, Gao, Zhao (b0105) 2019; 196 Aduda, Labeodan, Zeiler, Boxem, Zhao (b0140) 2016; 22 Li, Wang, Li, Wang, Zhao, Chen (b0165) 2020 Flores, Shaffer, Brouwer (b0040) 2017; 191 Land Transport Guru. Available from Hamdy, Sirén (b0320) 2015; 9 HKEED (Hong Kong Energy End-use Data). 2018. Hong Kong Energy End-use Data 2018. Wu, Ravey, Chrenko, Miraoui (b0030) 2019; 196 Air-Cooled Liquid Chillers with Integrated Hydronic Module, 30RB 162-802 Nominal cooling capacity 162-774 kW. Available from Finck, Li, Kramer, Zeiler (b0095) 2017; 209 Meinrenken, Mehmani (b0215) 2019 Zhou, Cao (b0085) 2019; 158 TCSFR. Travel Characteristics Survey – Final report, The Government of the Hong Kong special administrative region, Transport Department. Reynders, Diriken, Saelens (b0080) 2017; 198 ATB Riva Calzoni ATB 500 kW. ANNEX 67. Jensen, Marszal-Pomianowska, Lollini, Pasut, Knotzer, Engelmann (b0065) 2017; 155 Glensk, Madlener (b0125) 2018; 177 Zhou, Cao (b0240) 2019 Quddus, Shahvari, Marufuzzaman, Usher, Jaradat (b0035) 2018; 229 Bulk Tariff. Ramos, Moreno, Rodríguez, Delgado, Domínguez (b0110) 2019; 194 Alanne, Cao (b0015) 2017; 71 Wang, Huang, Wang, Zeng, Li, Wang (b0185) 2018; 197 Dréau, Heiselberg (b0100) 2016; 111 Umetani, Fukushima, Morita (b0170) 2017; 67 SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), TESS (Thermal Energy Systems Specialists). “TRNSYS 18 A TESSLibs 17 Volume 03 Electrical Library, Mathematical Reference,” the documentations attached in the software package of TRNSYS 18 for the TESS Component Library. Smart Readiness Indicator. Mehrjerdi, Iqbal, Rakhshani, Torres (b0075) 2019 Koskela, Rautiainen, Järventausta (b0210) 2019; 239 Borges, Soares, Vale (b0225) 2017; 50 10.1016/j.enconman.2020.113017_b0260 Yang (10.1016/j.enconman.2020.113017_b0105) 2019; 196 10.1016/j.enconman.2020.113017_b0265 Wu (10.1016/j.enconman.2020.113017_b0030) 2019; 196 10.1016/j.enconman.2020.113017_b0300 Luo (10.1016/j.enconman.2020.113017_b0195) 2019 Li (10.1016/j.enconman.2020.113017_b0165) 2020 Depcik (10.1016/j.enconman.2020.113017_b0025) 2020 10.1016/j.enconman.2020.113017_b0305 Tanguy (10.1016/j.enconman.2020.113017_b0205) 2016; 26 Safder (10.1016/j.enconman.2020.113017_b0220) 2018; 166 Zhou (10.1016/j.enconman.2020.113017_b0160) 2020 Koskela (10.1016/j.enconman.2020.113017_b0210) 2019; 239 10.1016/j.enconman.2020.113017_b0290 Aduda (10.1016/j.enconman.2020.113017_b0140) 2016; 22 Cao (10.1016/j.enconman.2020.113017_b0190) 2019 Ruusu (10.1016/j.enconman.2020.113017_b0115) 2019; 180 10.1016/j.enconman.2020.113017_b0255 10.1016/j.enconman.2020.113017_b0295 Umetani (10.1016/j.enconman.2020.113017_b0170) 2017; 67 10.1016/j.enconman.2020.113017_b0250 10.1016/j.enconman.2020.113017_b0055 10.1016/j.enconman.2020.113017_b0010 Alanne (10.1016/j.enconman.2020.113017_b0015) 2017; 71 Glensk (10.1016/j.enconman.2020.113017_b0125) 2018; 177 Jensen (10.1016/j.enconman.2020.113017_b0065) 2017; 155 Coninck (10.1016/j.enconman.2020.113017_b0090) 2016; 162 Wang (10.1016/j.enconman.2020.113017_b0185) 2018; 197 Alirahmi (10.1016/j.enconman.2020.113017_b0200) 2020 Quddus (10.1016/j.enconman.2020.113017_b0035) 2018; 229 Chakrabarti (10.1016/j.enconman.2020.113017_b0230) 2019; 176 10.1016/j.enconman.2020.113017_b0280 Flores (10.1016/j.enconman.2020.113017_b0040) 2017; 191 Zhou (10.1016/j.enconman.2020.113017_b0085) 2019; 158 Reynders (10.1016/j.enconman.2020.113017_b0080) 2017; 198 Katić (10.1016/j.enconman.2020.113017_b0145) 2018; 174 Tao (10.1016/j.enconman.2020.113017_b0180) 2018; 150 10.1016/j.enconman.2020.113017_b0245 Selinger-Lutz (10.1016/j.enconman.2020.113017_b0060) 2018; 172 Zhou (10.1016/j.enconman.2020.113017_b0175) 2019 Zhou (10.1016/j.enconman.2020.113017_b0240) 2019 10.1016/j.enconman.2020.113017_b0285 Meinrenken (10.1016/j.enconman.2020.113017_b0215) 2019 Hamdy (10.1016/j.enconman.2020.113017_b0320) 2015; 9 Mehrjerdi (10.1016/j.enconman.2020.113017_b0075) 2019 Borges (10.1016/j.enconman.2020.113017_b0225) 2017; 50 10.1016/j.enconman.2020.113017_b0325 10.1016/j.enconman.2020.113017_b0005 Niu (10.1016/j.enconman.2020.113017_b0130) 2019; 241 Zhao (10.1016/j.enconman.2020.113017_b0120) 2019; 184 Hamdy (10.1016/j.enconman.2020.113017_b0330) 2011; 43 Dréau (10.1016/j.enconman.2020.113017_b0100) 2016; 111 10.1016/j.enconman.2020.113017_b0070 Barone (10.1016/j.enconman.2020.113017_b0020) 2019; 101 Qian (10.1016/j.enconman.2020.113017_b0045) 2020 10.1016/j.enconman.2020.113017_b0270 Niu (10.1016/j.enconman.2020.113017_b0050) 2019; 243 Fan (10.1016/j.enconman.2020.113017_b0150) 2018; 164 10.1016/j.enconman.2020.113017_b0310 Cui (10.1016/j.enconman.2020.113017_b0135) 2015; 102 10.1016/j.enconman.2020.113017_b0235 10.1016/j.enconman.2020.113017_b0275 Boukezata (10.1016/j.enconman.2020.113017_b0155) 2016; 139 10.1016/j.enconman.2020.113017_b0315 Finck (10.1016/j.enconman.2020.113017_b0095) 2017; 209 Ramos (10.1016/j.enconman.2020.113017_b0110) 2019; 194 |
| References_xml | – reference: Air-Cooled Liquid Chillers with Integrated Hydronic Module, 30RB 162-802 Nominal cooling capacity 162-774 kW. Available from – volume: 172 start-page: 228 year: 2018 end-page: 236 ident: b0060 article-title: Flexibility assessment of a pool of residential micro combined heat and power systems publication-title: Energy Convers Manage – year: 2019 ident: b0240 article-title: Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: a case study of a high-rise office building in Hong Kong publication-title: Energy Convers Manage – year: 2019 ident: b0075 article-title: Daily-seasonal operation in net-zero energy building powered by hybrid renewable energies and hydrogen storage systems publication-title: Energy Convers Manage – volume: 174 start-page: 199 year: 2018 end-page: 213 ident: b0145 article-title: Neural network based predictive control of personalized heating systems publication-title: Energy Build – volume: 155 start-page: 25 year: 2017 end-page: 34 ident: b0065 article-title: IEA EBC annex 67 energy flexible buildings publication-title: Energy Build – volume: 241 start-page: 390 year: 2019 end-page: 403 ident: b0130 article-title: A robust optimization model for designing the building cooling source under cooling load uncertainty publication-title: Appl Energy – reference: Hamdy M, Palonen M, Hasan A. Implementation of Pareto-Archive NSGA-II Algorithms to a nearly-Zero-Energy Building Optimization Problem. The first Simulation and Optimization Conference (BSO12). 2012. IBPSA-England, Loughborogh University, UK. – volume: 194 start-page: 199 year: 2019 end-page: 216 ident: b0110 article-title: Potential for exploiting the synergies between buildings through DSM approaches. Case study: La Graciosa Island publication-title: Energy Convers Manage – volume: 50 start-page: 3356 year: 2017 end-page: 3361 ident: b0225 article-title: Multi-objective particle swarm optimization to solve energy scheduling with vehicle-to-grid in office buildings considering uncertainties publication-title: IFAC-PapersOnLine – reference: SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), and TESS (Thermal Energy Systems Specialists). “TESSLibs 17 Component Libiaries for the TRNSYS Simulation Environment. Volume 06 HVAC Library Mathematical Reference,” the documentations attached in the software package of TRNSYS 18 for the TESS Models. – year: 2020 ident: b0165 article-title: Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings publication-title: Energy Convers Manage – reference: Zhou Y, Cao S. Figure 3 is reprinted from Energy Conversion and Management, 199, Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: A case study of a high-rise office building in Hong Kong, Copyright (2019), with permission from Elsevier. – reference: HKCEF. Guidelines to Account for and Report on Greenhouse Gas Emissions and Removals for Buildings (Commercial, Residential or Institutional Purposes) in Hong Kong. – reference: . 2011. – reference: SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), TESS (Thermal Energy Systems Specialists). “TESSLibs 17 Component libraries for the TRNSYS Simulation Environment, Volume 11 Storage tank Library Mathematical Reference.”. – reference: Zhou Y, Cao S. Figure 2 is partially reprinted and partially redrawn from Energy Conversion and Management, 199, Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: A case study of a high-rise office building in Hong Kong, Copyright (2019), with permission from Elsevier. – year: 2020 ident: b0160 article-title: Quantification of energy flexibility of residential net-zero-energy buildings involved with dynamic operations of hybrid energy storages and diversified energy conversion strategies publication-title: Sustainable Energy Grids Net – volume: 196 start-page: 117 year: 2019 end-page: 126 ident: b0105 article-title: Coordination of integrated natural gas and electrical systems in day-ahead scheduling considering a novel flexible energy-use mechanism publication-title: Energy Convers Manage – reference: TCSFR. Travel Characteristics Survey – Final report, The Government of the Hong Kong special administrative region, Transport Department. – year: 2020 ident: b0200 article-title: Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy publication-title: Energy Convers Manage – reference: Performance based building energy code 2007. Available from: – reference: ; 2018. – volume: 209 start-page: 409 year: 2017 end-page: 425 ident: b0095 article-title: Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems publication-title: Appl Energy – reference: SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), “TRNSYS 18 Volume 04, Mathematical Reference,” the documentations attached in the software package of TRNSYS 18. – volume: 22 start-page: 146 year: 2016 end-page: 163 ident: b0140 article-title: Demand side flexibility: Potentials and building performance implications publication-title: Sustainable Cities Soc – reference: Land Transport Guru. Available from < – volume: 101 start-page: 625 year: 2019 end-page: 648 ident: b0020 article-title: Building to vehicle to building concept toward a novel zero energy paradigm: modelling and case studies publication-title: Renewable Sustainable Energy Rev – volume: 139 start-page: 130 year: 2016 end-page: 141 ident: b0155 article-title: Predictive current control in multifunctional grid connected inverter interfaced by PV system publication-title: Sol Energy – volume: 111 start-page: 991 year: 2016 end-page: 1002 ident: b0100 article-title: Energy flexibility of residential buildings using short term heat storage in the thermal mass publication-title: Energy – volume: 239 start-page: 1175 year: 2019 end-page: 1189 ident: b0210 article-title: Using electrical energy storage in residential buildings – sizing of battery and photovoltaic panels based on electricity cost optimization publication-title: Appl Energy – volume: 158 start-page: 2567 year: 2019 end-page: 2579 ident: b0085 article-title: Investigation of the flexibility of a residential net-zero energy building (NZEB) integrated with an electric vehicle in Hong Kong publication-title: Energy Procedia – volume: 177 start-page: 737 year: 2018 end-page: 749 ident: b0125 article-title: Evaluating the enhanced flexibility of lignite-fired power plants: A real options analysis publication-title: Energy Convers Manage – year: 2019 ident: b0195 article-title: Multi-objective capacity optimization of a distributed energy system considering economy, environment and energy publication-title: Energy Convers Manage – reference: ; 2010. – volume: 26 start-page: 496 year: 2016 end-page: 506 ident: b0205 article-title: Optimization model and economic assessment of collaborative charging using Vehicle-to-Building publication-title: Sustainable Cities Soc – volume: 162 start-page: 653 year: 2016 end-page: 665 ident: b0090 article-title: Quantification of flexibility in buildings by cost curves – methodology and application publication-title: Appl Energy – year: 2019 ident: b0190 article-title: The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings publication-title: Appl Energy – reference: Air-Cooled Liquid Chillers 10 to 60 Tons. CGAD090. – reference: Colmenar-Santos A, Muñoz-Gómez A, Rosales-Asensio E, López-Rey Á. Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario. 2019. DOI: – volume: 176 start-page: 805 year: 2019 end-page: 815 ident: b0230 article-title: Optimisation and analysis of system integration between electric vehicles and UK decentralised energy schemes publication-title: Energy – reference: ATB Riva Calzoni ATB 500 kW. – reference: ANNEX 67. – year: 2020 ident: b0045 article-title: Economic optimization and potential analysis of fuel cell vehicle-to-grid (FCV2G) system with large-scale buildings publication-title: Energy Convers Manage – volume: 150 start-page: 735 year: 2018 end-page: 744 ident: b0180 article-title: Data-driven optimized layout of battery electric vehicle charging infrastructure publication-title: Energy – volume: 9 start-page: 411 year: 2015 end-page: 430 ident: b0320 article-title: A multi-aid optimization scheme for large-scale investigation of cost-optimality and energy performance of buildings publication-title: J Build Perform Simul – volume: 71 start-page: 697 year: 2017 end-page: 711 ident: b0015 article-title: Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility publication-title: Renew Sustain Energy Rev – reference: Bulk Tariff. – reference: SEL (Solar Energy Laboratory, Univ. of Wisconsin-Madison), TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), CSTB (Centre Scientifique et Technique du Bâtiment), TESS (Thermal Energy Systems Specialists). “TRNSYS 18 A TESSLibs 17 Volume 03 Electrical Library, Mathematical Reference,” the documentations attached in the software package of TRNSYS 18 for the TESS Component Library. – volume: 191 start-page: 367 year: 2017 end-page: 384 ident: b0040 article-title: Electricity costs for a Level 3 electric vehicle fueling station integrated with a building publication-title: Appl Energy – volume: 180 start-page: 1109 year: 2019 end-page: 1128 ident: b0115 article-title: Direct quantification of multiple-source energy flexibility in a residential building using a new model predictive high-level controller publication-title: Energy Convers Manage – reference: Smart Readiness Indicator. – volume: 198 start-page: 192 year: 2017 end-page: 202 ident: b0080 article-title: Generic characterization method for energy flexibility: applied to structural thermal storage in residential buildings publication-title: Appl Energy – volume: 197 start-page: 1069 year: 2018 end-page: 1083 ident: b0185 article-title: Energy management of smart micro-grid with response loads and distributed generation considering demand response publication-title: J Cleaner Prod – reference: HKEED (Hong Kong Energy End-use Data). 2018. Hong Kong Energy End-use Data 2018. – volume: 184 start-page: 15 year: 2019 end-page: 23 ident: b0120 article-title: Comparative study of flexibility enhancement technologies for the coal-fired combined heat and power plant publication-title: Energy Convers Manage – reference: >. – volume: 164 start-page: 536 year: 2018 end-page: 549 ident: b0150 article-title: A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level publication-title: Energy – volume: 166 start-page: 602 year: 2018 end-page: 636 ident: b0220 article-title: Multi-objective optimization and flexibility analysis of a cogeneration system using thermorisk and thermoeconomic analyses publication-title: Energy Convers Manage – volume: 43 start-page: 2055 year: 2011 end-page: 2067 ident: b0330 article-title: Impact of adaptive thermal comfort criteria on building energy use and cooling equipment size using a multi-objective optimization scheme publication-title: Energy Build – reference: . – volume: 67 start-page: 115 year: 2017 end-page: 122 ident: b0170 article-title: A linear programming based heuristic algorithm for charge and discharge scheduling of electric vehicles in a building energy management system publication-title: Omega – year: 2020 ident: b0025 article-title: Comparison of lithium ion Batteries, hydrogen fueled combustion Engines, and a hydrogen fuel cell in powering a small Unmanned Aerial Vehicle publication-title: Energy Convers Manage – volume: 102 start-page: 227 year: 2015 end-page: 238 ident: b0135 article-title: Evaluation of a fast power demand response strategy using active and passive building cold storages for smart grid applications publication-title: Energy Convers Manage – year: 2019 ident: b0215 article-title: Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs publication-title: Appl Energy – reference: Palonen M, Hamdy M, Hasan A. MOBO A new software for multi-objective building performance optimization. 13th Conference of International Building Performance Simulation Association, Chambery, France, August 26–28. – volume: 243 start-page: 274 year: 2019 end-page: 287 ident: b0050 article-title: Flexible dispatch of a building energy system using building thermal storage and battery energy storage publication-title: Appl Energy – reference: NISSAN LEAF Specs. Available from < – volume: 229 start-page: 841 year: 2018 end-page: 857 ident: b0035 article-title: A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid publication-title: Appl Energy – year: 2019 ident: b0175 article-title: Energy integration and interaction between buildings and vehicles: a state-of-the-art review publication-title: Renew Sustain Energy Rev – volume: 196 start-page: 878 year: 2019 end-page: 890 ident: b0030 article-title: Demand side energy management of EV charging stations by approximate dynamic programming publication-title: Energy Convers Manage – ident: 10.1016/j.enconman.2020.113017_b0270 – ident: 10.1016/j.enconman.2020.113017_b0255 – ident: 10.1016/j.enconman.2020.113017_b0280 – volume: 180 start-page: 1109 year: 2019 ident: 10.1016/j.enconman.2020.113017_b0115 article-title: Direct quantification of multiple-source energy flexibility in a residential building using a new model predictive high-level controller publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.11.026 – volume: 166 start-page: 602 year: 2018 ident: 10.1016/j.enconman.2020.113017_b0220 article-title: Multi-objective optimization and flexibility analysis of a cogeneration system using thermorisk and thermoeconomic analyses publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.04.030 – volume: 229 start-page: 841 year: 2018 ident: 10.1016/j.enconman.2020.113017_b0035 article-title: A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.08.018 – volume: 191 start-page: 367 year: 2017 ident: 10.1016/j.enconman.2020.113017_b0040 article-title: Electricity costs for a Level 3 electric vehicle fueling station integrated with a building publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.01.023 – ident: 10.1016/j.enconman.2020.113017_b0325 – ident: 10.1016/j.enconman.2020.113017_b0265 – ident: 10.1016/j.enconman.2020.113017_b0290 – ident: 10.1016/j.enconman.2020.113017_b0235 – volume: 196 start-page: 878 year: 2019 ident: 10.1016/j.enconman.2020.113017_b0030 article-title: Demand side energy management of EV charging stations by approximate dynamic programming publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.06.058 – ident: 10.1016/j.enconman.2020.113017_b0315 – volume: 158 start-page: 2567 year: 2019 ident: 10.1016/j.enconman.2020.113017_b0085 article-title: Investigation of the flexibility of a residential net-zero energy building (NZEB) integrated with an electric vehicle in Hong Kong publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.02.005 – volume: 22 start-page: 146 year: 2016 ident: 10.1016/j.enconman.2020.113017_b0140 article-title: Demand side flexibility: Potentials and building performance implications publication-title: Sustainable Cities Soc doi: 10.1016/j.scs.2016.02.011 – ident: 10.1016/j.enconman.2020.113017_b0275 – volume: 174 start-page: 199 year: 2018 ident: 10.1016/j.enconman.2020.113017_b0145 article-title: Neural network based predictive control of personalized heating systems publication-title: Energy Build doi: 10.1016/j.enbuild.2018.06.033 – volume: 164 start-page: 536 year: 2018 ident: 10.1016/j.enconman.2020.113017_b0150 article-title: A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level publication-title: Energy doi: 10.1016/j.energy.2018.09.018 – volume: 50 start-page: 3356 year: 2017 ident: 10.1016/j.enconman.2020.113017_b0225 article-title: Multi-objective particle swarm optimization to solve energy scheduling with vehicle-to-grid in office buildings considering uncertainties publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.523 – volume: 71 start-page: 697 year: 2017 ident: 10.1016/j.enconman.2020.113017_b0015 article-title: Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.12.098 – volume: 194 start-page: 199 year: 2019 ident: 10.1016/j.enconman.2020.113017_b0110 article-title: Potential for exploiting the synergies between buildings through DSM approaches. Case study: La Graciosa Island publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.04.084 – volume: 239 start-page: 1175 year: 2019 ident: 10.1016/j.enconman.2020.113017_b0210 article-title: Using electrical energy storage in residential buildings – sizing of battery and photovoltaic panels based on electricity cost optimization publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.02.021 – ident: 10.1016/j.enconman.2020.113017_b0285 – volume: 241 start-page: 390 year: 2019 ident: 10.1016/j.enconman.2020.113017_b0130 article-title: A robust optimization model for designing the building cooling source under cooling load uncertainty publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.062 – ident: 10.1016/j.enconman.2020.113017_b0260 – volume: 101 start-page: 625 year: 2019 ident: 10.1016/j.enconman.2020.113017_b0020 article-title: Building to vehicle to building concept toward a novel zero energy paradigm: modelling and case studies publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2018.11.003 – year: 2019 ident: 10.1016/j.enconman.2020.113017_b0240 article-title: Energy flexibility investigation of advanced grid-responsive energy control strategies with the static battery and electric vehicles: a case study of a high-rise office building in Hong Kong publication-title: Energy Convers Manage – year: 2019 ident: 10.1016/j.enconman.2020.113017_b0075 article-title: Daily-seasonal operation in net-zero energy building powered by hybrid renewable energies and hydrogen storage systems publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.112156 – year: 2020 ident: 10.1016/j.enconman.2020.113017_b0200 article-title: Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.112426 – volume: 196 start-page: 117 year: 2019 ident: 10.1016/j.enconman.2020.113017_b0105 article-title: Coordination of integrated natural gas and electrical systems in day-ahead scheduling considering a novel flexible energy-use mechanism publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.05.109 – ident: 10.1016/j.enconman.2020.113017_b0310 – year: 2020 ident: 10.1016/j.enconman.2020.113017_b0025 article-title: Comparison of lithium ion Batteries, hydrogen fueled combustion Engines, and a hydrogen fuel cell in powering a small Unmanned Aerial Vehicle publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.112514 – ident: 10.1016/j.enconman.2020.113017_b0295 – ident: 10.1016/j.enconman.2020.113017_b0300 – ident: 10.1016/j.enconman.2020.113017_b0070 – year: 2020 ident: 10.1016/j.enconman.2020.113017_b0165 article-title: Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings publication-title: Energy Convers Manage – volume: 150 start-page: 735 year: 2018 ident: 10.1016/j.enconman.2020.113017_b0180 article-title: Data-driven optimized layout of battery electric vehicle charging infrastructure publication-title: Energy doi: 10.1016/j.energy.2018.03.018 – year: 2019 ident: 10.1016/j.enconman.2020.113017_b0190 article-title: The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113347 – volume: 243 start-page: 274 year: 2019 ident: 10.1016/j.enconman.2020.113017_b0050 article-title: Flexible dispatch of a building energy system using building thermal storage and battery energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.187 – volume: 198 start-page: 192 issue: 15 year: 2017 ident: 10.1016/j.enconman.2020.113017_b0080 article-title: Generic characterization method for energy flexibility: applied to structural thermal storage in residential buildings publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.04.061 – volume: 9 start-page: 411 issue: 4 year: 2015 ident: 10.1016/j.enconman.2020.113017_b0320 article-title: A multi-aid optimization scheme for large-scale investigation of cost-optimality and energy performance of buildings publication-title: J Build Perform Simul doi: 10.1080/19401493.2015.1069398 – volume: 177 start-page: 737 year: 2018 ident: 10.1016/j.enconman.2020.113017_b0125 article-title: Evaluating the enhanced flexibility of lignite-fired power plants: A real options analysis publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.09.062 – volume: 184 start-page: 15 year: 2019 ident: 10.1016/j.enconman.2020.113017_b0120 article-title: Comparative study of flexibility enhancement technologies for the coal-fired combined heat and power plant publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.01.030 – volume: 26 start-page: 496 year: 2016 ident: 10.1016/j.enconman.2020.113017_b0205 article-title: Optimization model and economic assessment of collaborative charging using Vehicle-to-Building publication-title: Sustainable Cities Soc doi: 10.1016/j.scs.2016.03.012 – ident: 10.1016/j.enconman.2020.113017_b0245 doi: 10.1016/j.enconman.2019.111888 – ident: 10.1016/j.enconman.2020.113017_b0055 – volume: 67 start-page: 115 year: 2017 ident: 10.1016/j.enconman.2020.113017_b0170 article-title: A linear programming based heuristic algorithm for charge and discharge scheduling of electric vehicles in a building energy management system publication-title: Omega doi: 10.1016/j.omega.2016.04.005 – volume: 43 start-page: 2055 issue: 9 year: 2011 ident: 10.1016/j.enconman.2020.113017_b0330 article-title: Impact of adaptive thermal comfort criteria on building energy use and cooling equipment size using a multi-objective optimization scheme publication-title: Energy Build doi: 10.1016/j.enbuild.2011.04.006 – year: 2020 ident: 10.1016/j.enconman.2020.113017_b0160 article-title: Quantification of energy flexibility of residential net-zero-energy buildings involved with dynamic operations of hybrid energy storages and diversified energy conversion strategies publication-title: Sustainable Energy Grids Net – year: 2020 ident: 10.1016/j.enconman.2020.113017_b0045 article-title: Economic optimization and potential analysis of fuel cell vehicle-to-grid (FCV2G) system with large-scale buildings publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.112463 – volume: 111 start-page: 991 year: 2016 ident: 10.1016/j.enconman.2020.113017_b0100 article-title: Energy flexibility of residential buildings using short term heat storage in the thermal mass publication-title: Energy doi: 10.1016/j.energy.2016.05.076 – year: 2019 ident: 10.1016/j.enconman.2020.113017_b0195 article-title: Multi-objective capacity optimization of a distributed energy system considering economy, environment and energy publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2019.112081 – volume: 139 start-page: 130 year: 2016 ident: 10.1016/j.enconman.2020.113017_b0155 article-title: Predictive current control in multifunctional grid connected inverter interfaced by PV system publication-title: Sol Energy doi: 10.1016/j.solener.2016.09.029 – year: 2019 ident: 10.1016/j.enconman.2020.113017_b0215 article-title: Concurrent optimization of thermal and electric storage in commercial buildings to reduce operating cost and demand peaks under time-of-use tariffs publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113630 – ident: 10.1016/j.enconman.2020.113017_b0005 – volume: 162 start-page: 653 year: 2016 ident: 10.1016/j.enconman.2020.113017_b0090 article-title: Quantification of flexibility in buildings by cost curves – methodology and application publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.10.114 – volume: 176 start-page: 805 year: 2019 ident: 10.1016/j.enconman.2020.113017_b0230 article-title: Optimisation and analysis of system integration between electric vehicles and UK decentralised energy schemes publication-title: Energy doi: 10.1016/j.energy.2019.03.184 – ident: 10.1016/j.enconman.2020.113017_b0305 – year: 2019 ident: 10.1016/j.enconman.2020.113017_b0175 article-title: Energy integration and interaction between buildings and vehicles: a state-of-the-art review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.109337 – volume: 209 start-page: 409 year: 2017 ident: 10.1016/j.enconman.2020.113017_b0095 article-title: Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.11.036 – volume: 102 start-page: 227 issue: 15 year: 2015 ident: 10.1016/j.enconman.2020.113017_b0135 article-title: Evaluation of a fast power demand response strategy using active and passive building cold storages for smart grid applications publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.12.025 – volume: 155 start-page: 25 year: 2017 ident: 10.1016/j.enconman.2020.113017_b0065 article-title: IEA EBC annex 67 energy flexible buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2017.08.044 – volume: 197 start-page: 1069 year: 2018 ident: 10.1016/j.enconman.2020.113017_b0185 article-title: Energy management of smart micro-grid with response loads and distributed generation considering demand response publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2018.06.271 – ident: 10.1016/j.enconman.2020.113017_b0010 doi: 10.1016/j.energy.2019.06.118 – volume: 172 start-page: 228 year: 2018 ident: 10.1016/j.enconman.2020.113017_b0060 article-title: Flexibility assessment of a pool of residential micro combined heat and power systems publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.07.023 – ident: 10.1016/j.enconman.2020.113017_b0250 doi: 10.1016/j.enconman.2019.111888 |
| SSID | ssj0003506 |
| Score | 2.5782635 |
| Snippet | Multi-objective optimisation of interactive buildings-vehicles energy sharing network.
[Display omitted]
•A synergic buildings-vehicles energy sharing network... Systematic interactions between buildings, vehicles, and renewables can increase eco-economic viability on a neighbourhood scale. In this study, an interactive... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113017 |
| SubjectTerms | Algorithms Archives & records Buildings Carbon dioxide Carbon dioxide emissions cities Competitiveness Decision making Demand side management design Economics Electricity emissions Energy Energy flexibility Environmental conflicts Flexibility Hybrid energy storage imports Interactive energy sharing network Multi-objective optimisation Multiple objective analysis Pareto optimization renewable electricity Renewable energy renewable energy sources solutions Vehicles viability Zero energy buildings |
| Title | Multi-objective optimisation of an interactive buildings-vehicles energy sharing network with high energy flexibility using the Pareto archive NSGA-II algorithm |
| URI | https://dx.doi.org/10.1016/j.enconman.2020.113017 https://www.proquest.com/docview/2439479734 https://www.proquest.com/docview/2498271313 |
| Volume | 218 |
| WOSCitedRecordID | wos000541104000016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELZKlwMcEL-isCAjcYtcmjip7eNqtUARVCvtIlVcIidxtpQ2WbVNtbwNz8KTMf5JGlrQghCHRpGb2G3my3g8nm8GoZeZGKRRICMimIQFSsoFEUmWkiAJBR8OUng5jaTfs_GYTybitNP5XnNhNnNWFPzqSlz-V1FDGwhbU2f_QtxNp9AA5yB0OILY4fhHgjeUWlImM6vKvBKUwsIF7Zhd_8LkiDDsKB257upir8hGTU2MnKcsH3A1lSY4r7CR4tZlq9Mb1xfkOpmmCa796lWrmnd1quvmlp60KW298dmbIzIaeXJ-US6hh8VPewG2IxP6bvx2Zi9jsReS82laVmayqNSXaovnY1nayKJCO2sumsmjhEWEcnkDwLhteentlPKhnMqFY3U5j0dg4u0s59O64WoqzjbuyXhGxZBwYWsZ95XV5pwJosm-bXUfWH2_N3VYL8asr_OHFvBH-3poXfJmYMmlO2m5z_SAerzArsKGN9BBwCLBu-jgaHQyedfYAzQyFV6bH9jiqf96tN-ZSDvGgrGAzu-iO27pgo8s5O6hjiruo9uthJYP0Lcd8OE2-HCZY1ngFvjwPviwxRZ24MMOfFiDD2vw1Re0wIcN-DCAD1vwYQc-7MCHG_A9RB9fn5wfvyWuBghJKaNrkkmpfJYkw4HKKZwzyaIkz1Ma5ukg8fNQQJNMwxx0DZOJLuYgMuHnnIZJGGU5fYS6BWDuMcIi8MNESS5UHobDLOPwYaCPohAeu1K0h6L6scepS5Cv67TM4zoSchbX4oq1uGIrrh561dx3aVPEXHuHqKUaO0PXGrAxgPHaew9rGMRO66ziQPPbmWA07KEXzdcgXr37JwtVVvoawQPmU58--Yfhn6Jb21fyEHXXy0o9QzfTzfrzavncQf8HqfHyMw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimisation+of+an+interactive+buildings-vehicles+energy+sharing+network+with+high+energy+flexibility+using+the+Pareto+archive+NSGA-II+algorithm&rft.jtitle=Energy+conversion+and+management&rft.au=Zhou%2C+Yuekuan&rft.au=Cao%2C+Sunliang&rft.au=Kosonen%2C+Risto&rft.au=Hamdy%2C+Mohamed&rft.date=2020-08-15&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=218&rft_id=info:doi/10.1016%2Fj.enconman.2020.113017&rft.externalDocID=S0196890420305616 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |