A Survey of Vectorization Methods in Topological Data Analysis

Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework for these methods, we comprehen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 45; číslo 12; s. 1 - 14
Hlavní autoři: Ali, Dashti, Asaad, Aras, Jimenez, Maria-Jose, Nanda, Vidit, Paluzo-Hidalgo, Eduardo, Soriano-Trigueros, Manuel
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework for these methods, we comprehensively benchmark them against three well-known classification tasks. Surprisingly, we discover that the best-performing method is a simple vectorization, which consists only of a few elementary summary statistics. Finally, we provide a convenient web application which has been designed to facilitate exploration and experimentation with various vectorization methods.
AbstractList Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework for these methods, we comprehensively benchmark them against three well-known classification tasks. Surprisingly, we discover that the best-performing method is a simple vectorization, which consists only of a few elementary summary statistics. Finally, we provide a convenient web application which has been designed to facilitate exploration and experimentation with various vectorization methods.
Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework for these methods, we comprehensively benchmark them against three well-known classification tasks. Surprisingly, we discover that the best-performing method is a simple vectorization, which consists only of a few elementary summary statistics. Finally, we provide a convenient web application which has been designed to facilitate exploration and experimentation with various vectorization methods.Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent homology barcodes. In this paper, we study thirteen such methods. Besides describing an organizational framework for these methods, we comprehensively benchmark them against three well-known classification tasks. Surprisingly, we discover that the best-performing method is a simple vectorization, which consists only of a few elementary summary statistics. Finally, we provide a convenient web application which has been designed to facilitate exploration and experimentation with various vectorization methods.
Author Paluzo-Hidalgo, Eduardo
Ali, Dashti
Asaad, Aras
Jimenez, Maria-Jose
Soriano-Trigueros, Manuel
Nanda, Vidit
Author_xml – sequence: 1
  givenname: Dashti
  surname: Ali
  fullname: Ali, Dashti
  organization: Koya University., Iraq
– sequence: 2
  givenname: Aras
  surname: Asaad
  fullname: Asaad, Aras
  organization: Koya University., Iraq
– sequence: 3
  givenname: Maria-Jose
  surname: Jimenez
  fullname: Jimenez, Maria-Jose
  organization: Mathematical Institute, University of Oxford, United Kingdom
– sequence: 4
  givenname: Vidit
  surname: Nanda
  fullname: Nanda, Vidit
  organization: Mathematical Institute, University of Oxford, United Kingdom
– sequence: 5
  givenname: Eduardo
  surname: Paluzo-Hidalgo
  fullname: Paluzo-Hidalgo, Eduardo
  organization: Departamento de Matematica Aplicada I, Universidad de Sevilla, Spain
– sequence: 6
  givenname: Manuel
  surname: Soriano-Trigueros
  fullname: Soriano-Trigueros, Manuel
  organization: Departamento de Matematica Aplicada I, Universidad de Sevilla, Spain
BookMark eNp9kE1LAzEQhoMo2Fb_gHhY8OJla5LZj-QilPpVaFGwel2y2VlN2W5qsivUX-_24yA9OJdh4HlnhqdPjmtbIyEXjA4Zo_Jm_jKaTYacchgCUAGSHZEeZwkNJZf8mPQoS3goBBenpO_9glIWxRR65HYUvLbuG9eBLYN31I115kc1xtbBDJtPW_jA1MHcrmxlP4xWVXCnGhWMalWtvfFn5KRUlcfzfR-Qt4f7-fgpnD4_TsajaaghhSbUCaVKao4cck5LqjQUCtISWMF0ClBEqUjiHPJuRtSxiGQuUeQKSy1TxmFArnd7V85-teibbGm8xqpSNdrWZ1zEMqEgedqhVwfowrau-3dDiTiJo646iu8o7az3Dsts5cxSuXXGaLZRmm2VZhul2V5pFxIHIW2arazGKVP9H73cRQ0i_rnFIU4jAb_HEIU5
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1137_24M1696469
crossref_primary_10_3390_app14052197
crossref_primary_10_1007_s10278_025_01575_7
crossref_primary_10_1371_journal_pone_0318108
crossref_primary_10_1007_s00521_024_10787_x
crossref_primary_10_1016_j_knosys_2025_113125
crossref_primary_10_1007_s00285_025_02253_6
crossref_primary_10_1109_TCE_2024_3396177
crossref_primary_10_1016_j_jfranklin_2024_107249
crossref_primary_10_1109_JIOT_2024_3412980
crossref_primary_10_1016_j_atech_2025_101094
crossref_primary_10_1007_s10462_024_10710_9
crossref_primary_10_3390_sym16091236
crossref_primary_10_3390_e26080701
Cites_doi 10.1016/j.patcog.2014.06.023
10.3934/fods.2021033
10.4310/HHA.2016.v18.n1.a21
10.1007/978-3-319-23231-7_27
10.1609/aaai.v36i7.20673
10.1109/ICPR.2002.1044854
10.1007/s10462-020-09897-4
10.1007/s00454-004-1146-y
10.3390/math10173086
10.1145/2582112.2582128
10.1007/978-1-4757-1793-8
10.3389/frai.2021.681174
10.1007/s00454-014-9604-7
10.3390/math10214039
10.1007/s10208-018-9379-y
10.1109/TPAMI.1986.4767851
10.1109/TKDE.2018.2790386
10.4310/CIS.2018.v18.n4.a4
10.2139/ssrn.3275996
10.1137/16M1100472
10.1007/s41468-020-00048-w
10.1007/978-3-319-94463-0
10.1080/10618600.2019.1573686
10.1007/978-3-319-42545-0
10.1145/2462356.2462402
10.1109/TPAMI.2018.2885516
10.1016/j.cag.2020.05.029
10.1007/978-3-030-31351-7_15
10.1007/978-3-319-29228-1_11
10.1007/BF00994018
10.1016/j.jsc.2016.03.009
10.1007/b97315
10.1109/CVPR.2015.7299106
10.1007/978-3-642-40193-0_6
10.1016/j.patcog.2020.107509
10.1090/S0273-0979-09-01249-X
10.1090/S0273-0979-07-01191-3
10.1109/ICMLA.2019.00202
10.1109/ICMLA.2019.00186
10.1007/s10444-021-09893-4
10.1017/9781009099950
10.1007/978-3-030-43408-3_5
10.1111/j.1467-8659.2009.01515.x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2023.3308391
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 14
ExternalDocumentID 10_1109_TPAMI_2023_3308391
10235748
Genre orig-research
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
ESBDL
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RNI
RZB
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c373t-c600a9c2e23b20f0ac3da37f31d1c733d47865b3b1d1eec5849b9e8baefc97123
IEDL.DBID RIE
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001104973300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 06:55:17 EDT 2025
Mon Jun 30 05:42:55 EDT 2025
Sat Nov 29 02:58:25 EST 2025
Tue Nov 18 21:32:39 EST 2025
Wed Aug 27 02:21:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-c600a9c2e23b20f0ac3da37f31d1c733d47865b3b1d1eec5849b9e8baefc97123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7316-117X
0000-0001-9243-6749
0000-0002-4280-5945
0000-0003-2521-1552
0000-0001-9578-8838
0000-0003-2449-1433
OpenAccessLink https://ieeexplore.ieee.org/document/10235748
PQID 2885654444
PQPubID 85458
PageCount 14
ParticipantIDs proquest_miscellaneous_2859603927
proquest_journals_2885654444
crossref_primary_10_1109_TPAMI_2023_3308391
ieee_primary_10235748
crossref_citationtrail_10_1109_TPAMI_2023_3308391
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref15
ref59
ref58
ref53
ref52
dlotko (ref57) 2022
ref11
ref55
chevyrev (ref42) 2016
hofer (ref14) 2019; 20
ref17
ref19
ref18
ferri (ref40) 1999; 9
ho (ref63) 1995
carriere (ref10) 2017
ref51
ref50
ref46
giusti (ref12) 2021
ref45
ref48
ref47
ref41
ref44
moor (ref16) 2020
ref9
ref3
ref6
ref5
ref35
ref34
ref37
ref36
perea (ref38) 2022
royer (ref54) 2021
ref32
adams (ref49) 2017; 18
ref2
ref1
ref39
bubenik (ref43) 2015; 16
pedregosa (ref61) 2011; 12
asaad (ref33) 2022; 10
ref24
ref23
ref26
ref25
ref20
xiao (ref8) 2017
ref22
ref21
(ref60) 2022
edelsbrunner (ref31) 2010
ref28
ref27
ref29
pickup (ref7) 2014
carrière (ref13) 2020
hatcher (ref30) 2002
oudot (ref4) 2017; 209
ref62
References_xml – volume: 20
  start-page: 1
  year: 2019
  ident: ref14
  article-title: Learning representations of persistence barcodes
  publication-title: J Mach Learn Res
– year: 2022
  ident: ref60
  publication-title: GUDHI The GUDHI Project User and Reference Manual
– ident: ref34
  doi: 10.1016/j.patcog.2014.06.023
– ident: ref51
  doi: 10.3934/fods.2021033
– ident: ref37
  doi: 10.4310/HHA.2016.v18.n1.a21
– ident: ref41
  doi: 10.1007/978-3-319-23231-7_27
– ident: ref15
  doi: 10.1609/aaai.v36i7.20673
– ident: ref6
  doi: 10.1109/ICPR.2002.1044854
– ident: ref55
  doi: 10.1007/s10462-020-09897-4
– ident: ref23
  doi: 10.1007/s00454-004-1146-y
– year: 2022
  ident: ref57
  article-title: Cubical complex
  publication-title: GUDHI User and Reference Manual
– ident: ref22
  doi: 10.3390/math10173086
– start-page: 2786
  year: 2020
  ident: ref13
  article-title: PersLay: A neural network layer for persistence diagrams and new graph topological signatures
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref45
  doi: 10.1145/2582112.2582128
– year: 2002
  ident: ref30
  publication-title: Algebraic Topology
– ident: ref28
  doi: 10.1007/978-1-4757-1793-8
– ident: ref21
  doi: 10.3389/frai.2021.681174
– ident: ref25
  doi: 10.1007/s00454-014-9604-7
– volume: 209
  year: 2017
  ident: ref4
  publication-title: Persistence Theory From Quiver Representations to Data Analysis
– volume: 10
  year: 2022
  ident: ref33
  article-title: Persistent homology for breast tumor classification using mammogram scans
  publication-title: Mathematics
  doi: 10.3390/math10214039
– ident: ref39
  doi: 10.1007/s10208-018-9379-y
– ident: ref59
  doi: 10.1109/TPAMI.1986.4767851
– start-page: 7045
  year: 2020
  ident: ref16
  article-title: Topological autoencoders
  publication-title: Proc Int Conf Mach Learn
– year: 2010
  ident: ref31
  publication-title: Computational Topology An Introduction
– ident: ref56
  doi: 10.1109/TKDE.2018.2790386
– volume: 16
  start-page: 77
  year: 2015
  ident: ref43
  article-title: Statistical topological data analysis using persistence landscapes
  publication-title: J Mach Learn Res
– ident: ref47
  doi: 10.4310/CIS.2018.v18.n4.a4
– start-page: 664
  year: 2017
  ident: ref10
  article-title: Sliced Wasserstein kernel for persistence diagrams
  publication-title: Proc Int Conf Mach Learn
– ident: ref18
  doi: 10.2139/ssrn.3275996
– ident: ref27
  doi: 10.1137/16M1100472
– year: 2022
  ident: ref38
  article-title: Approximating continuous functions on persistence diagrams using template functions
  publication-title: Found Comput Math
– start-page: 278
  year: 1995
  ident: ref63
  article-title: Random decision forests
  publication-title: Proc 3rd Int Conf Document Anal Recognition
– ident: ref50
  doi: 10.1007/s41468-020-00048-w
– ident: ref5
  doi: 10.1007/978-3-319-94463-0
– ident: ref46
  doi: 10.1080/10618600.2019.1573686
– year: 2021
  ident: ref12
  article-title: Signatures, Lipschitz-free spaces, and paths of persistence diagrams
– ident: ref24
  doi: 10.1007/978-3-319-42545-0
– ident: ref26
  doi: 10.1145/2462356.2462402
– start-page: 101
  year: 2014
  ident: ref7
  article-title: SHREC'14 track: Shape retrieval of non-rigid 3D human models
  publication-title: Proc 7th Eurographics Workshop 3D Object Retrieval
– ident: ref11
  doi: 10.1109/TPAMI.2018.2885516
– ident: ref48
  doi: 10.1016/j.cag.2020.05.029
– ident: ref19
  doi: 10.1007/978-3-030-31351-7_15
– ident: ref35
  doi: 10.1007/978-3-319-29228-1_11
– ident: ref62
  doi: 10.1007/BF00994018
– start-page: 1000
  year: 2021
  ident: ref54
  article-title: ATOL: Measure vectorization for automatic topologically-oriented learning
  publication-title: Proc 24th Int Conf Artif Intell Statist
– ident: ref44
  doi: 10.1016/j.jsc.2016.03.009
– ident: ref29
  doi: 10.1007/b97315
– ident: ref9
  doi: 10.1109/CVPR.2015.7299106
– volume: 18
  start-page: 218
  year: 2017
  ident: ref49
  article-title: Persistence images: A stable vector representation of persistent homology
  publication-title: J Mach Learn Res
– ident: ref3
  doi: 10.1007/978-3-642-40193-0_6
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref61
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: ref36
  doi: 10.1016/j.patcog.2020.107509
– ident: ref2
  doi: 10.1090/S0273-0979-09-01249-X
– ident: ref1
  doi: 10.1090/S0273-0979-07-01191-3
– ident: ref53
  doi: 10.1109/ICMLA.2019.00202
– volume: 9
  start-page: 16
  year: 1999
  ident: ref40
  article-title: Representing size functions by complex polynomials
  publication-title: Proc Math Met Pattern Recognit
– ident: ref52
  doi: 10.1109/ICMLA.2019.00186
– ident: ref20
  doi: 10.1007/s10444-021-09893-4
– ident: ref32
  doi: 10.1017/9781009099950
– ident: ref17
  doi: 10.1007/978-3-030-43408-3_5
– ident: ref58
  doi: 10.1111/j.1467-8659.2009.01515.x
– year: 2017
  ident: ref8
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
– year: 2016
  ident: ref42
  article-title: A primer on the signature method in machine learning
SSID ssj0014503
Score 2.6210742
Snippet Attempts to incorporate topological information in supervised learning tasks have resulted in the creation of several techniques for vectorizing persistent...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Applications programs
barcodes
Cognitive tasks
Data analysis
Homology
persistent homology
Supervised learning
Topological data analysis
Topology
vectorization methods
Title A Survey of Vectorization Methods in Topological Data Analysis
URI https://ieeexplore.ieee.org/document/10235748
https://www.proquest.com/docview/2885654444
https://www.proquest.com/docview/2859603927
Volume 45
WOSCitedRecordID wos001104973300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9UfNAHPyfOjxHBN-nWNp1JXoShDn1QBKfsrSTpFQbSyT4E_3svaTsmomD70tI0hFwu97skdz-A84RgriUkEejMGHJQZBgYK_IgyjGUSiuaNq0nmxCPj3I4VE9VsLqPhUFEf_gM2-7R7-VnYzt3S2WdyCdnSeQqrAohymCtxZZB0vU0yARhSMXJj6gjZELVGTz1Hu7bjii8Te47QYLomxXytCo_5mJvYPrb_2zaDmxVSJL1StHvwgoWe7BdszSwSmn3YHMp5eA-XPXY83zygZ9snLNXv2RfRWKyB08mPWWjgg1K6gQnQHajZ5rVuUsa8NK_HVzfBRWHQmC54LPAEqDRysYYcxOHeagtzzQXOY-yyArOs0TIy67hht4RLcERZRRKozG3SpBZO4C1YlzgITAV53Rrw5PYkNlHIwkcxlp1M55wg6IJUd2nqa0SjDuei7fUOxqhSr0cUieHtJJDEy4W_7yX6TX-LN1wPb9Usuz0JpzUsksrFZymsZQEVhO6mnC2-EzK43ZEdIHjuSvTJQ-OIKI4-qXqY9hwLSgPsJzA2mwyx1NYtx-z0XTSonE4lC0_Dr8AA3DXwQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED62rrDuoV2zlGXNNhX2NpzYlj1JL4OwLSQsCYFmo29Gks8QKM7IL-h_35Nsh4yxwewXG8uy0Pl030m6-wA-JARzLSGJQOfGkIMiw8BYUQRRgaFUWtGwaT3ZhJjN5N2dmtfB6j4WBhH95jPsuUu_lp-v7M5NlfUjn5wlkU_hWZrQV6pwrcOiQZJ6ImQCMaTk5Ek0MTKh6i_mg-m456jCe-TAEyiIfrNDnljlj9HYm5jhxX827iWc11iSDSrhX8ITLFtw0fA0sFptW_DiKOngK_g8YLe79R4f2KpgP_2kfR2LyaaeTnrDliVbVOQJToTsq95q1mQvacOP4bfFl1FQsygElgu-DSxBGq1sjDE3cViE2vJcc1HwKI-s4DxPhPyUGm7oHtESIFFGoTQaC6sEGbYrOClXJb4GpuKCTm14Ehsy_GgkwcNYqzTnCTcoOhA1fZrZOsW4Y7q4z7yrEarMyyFzcshqOXTg4-GdX1WCjX-WbruePypZdXoHuo3ssloJN1ksJcHVhI4O3Bwek_q4NRFd4mrnyqTkwxFIFG_-UvV7eD5aTCfZZDz7fg1nrjXVdpYunGzXO3wLp3a_XW7W7_zf-AhO89og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Vectorization+Methods+in+Topological+Data+Analysis&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Dashti%2C+Ali&rft.au=Aras+Asaad&rft.au=Maria-Jose+Jimenez&rft.au=Nanda%2C+Vidit&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=45&rft.issue=12&rft.spage=14069&rft_id=info:doi/10.1109%2FTPAMI.2023.3308391&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon